
Chapter 2

Credit Risk Measurement in the Context

of Basel II

2.1 Banking Supervision and Basel II

During the last decades, there has been a lot of effort spent on improving and

extending the regulation of financial institutions. There are several reasons for a

regulation of these institutions, which are mostly different from the regulation of

other economic sectors. Even if there are some discussions about tendencies of the

banking sector to constitute a monopoly as a result of economies of scale and

economies of scope, the empirical evidence is rather scarce.7 A widely accepted

argument is that the (unregulated) banking system is unstable. If a bank is threatened

by default or the depositors expect a high default risk, this can lead to a bank run,

meaning that many depositors could abruptly withdraw their deposits.8 This behav-

ior is a consequence of the “sequential service constraint”, meaning that whether a

depositor gets his deposits depends on the position in the waiting queue.9 The

problem is that, as most banks invest the short term deposits in long term projects

(term transformation), there is a high risk of illiquidity of the bank, regardless of

whether the bank is overindebted or not. Due to incomplete information, depositors

of different institutions could also withdraw their deposits, and this domino effect

could finally lead to a collapse of the complete banking system. This type of risk is

called “systemic risk”.10 Because of the enormous relevance of banks for the

complete economy, the state will usually act as a “lender of last resort”, especially

in the case of big financial institutions (“too big to fail”-phenomenon) instead of

accepting a bank’s default, which is due to the presence of systemic risk.11 Against

7Cf. Berger et al. (1993, 1999).
8Cf. Diamond and Dybvig (1983).
9Cf. Greenbaum and Thakor (1995). This is an important difference to securities where the holder

is exposed to a price decline instead.
10Cf. Saunders (1987) and Hellwig (1995).
11The relevance of this phenomenon has been remarkably shown in the ongoing financial crisis. In

2007 and 2008, there have been many examples of bailouts of financial institutions, such as Bear
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this background, the state is interested in a regulation of the financial system in order

to reduce the probability of bank runs and the systemic risk.12

The first German banking supervision was established in 1931 after the default

of the Danatbank during the Great Depression. This event came along with a

massive withdrawal of deposits and bank runs. As a consequence of the default of

the Herstatt Bank in 1974, about 52,000 private customers lost their money.

Furthermore, many US American banks, which had currency contracts with the

Herstatt Bank, did not get back their receivables. This event led to several addi-

tional regulations, including the extension of deposit guarantees and the large

exposure rules. Moreover, as a result of this default, the central-bank Governors

of the Group of Ten (G10) countries founded the Basel Committee on Banking

Supervision in the end of 1974, which had the objective to close gaps in interna-

tional supervisory coverage. In 1988 the Committee introduced the Basel Capital

Accord (Basel I), which led to a major harmonization of international banking

regulation and minimum capital requirements for banks.13 According to Basel I, it

is required that banks hold equity equal to 8% of their risk weighted assets, which

are calculated as a percentage between 0% (e.g. for OECD banks) and 100% (e.g.

for corporates) of the credit exposure. The basic principle behind this requirement is

that the minimum capital requirement, which also implies a maximum leverage,

leads to an acceptable maximum probability of default for every single bank. Thus,

this restriction of risk should lead to a stabilization of the banking system. The

problem is that these capital rules are hardly risk-sensitive – for example, an invest-

ment grade and a speculative grade corporate bond require the identical capital. As

a consequence, banks have an incentive to deal with risky credits, especially if the

regulatory capital constraint is binding. This incentive stems from the risk-shifting

problem, which is relevant for every indebted institution, but increases with lever-

age. This problem is already present for projects with identical expected pay-offs

but as risky investments usually offer higher expected profits, the incentive of risk-

shifting is even higher. In addition, the Basel Capital Accord offered the possibility

of “regulatory capital arbitrage”, which is a result of the missing risk-sensitivity,

too. A bank with a small capital buffer could bundle its low-risk assets in asset

backed securities and sell them to investors. After this transaction, the bank still has

Stearns, Fannie Mae, Freddie Mac, and AIG in the United States or IKB and Hypo Real Estate in

Germany. But an even stronger argument for the “too big to fail”-phenomenon is the default of

Lehman Brothers in September 2008. Probably due to the global diversification of their creditors,

the bank’s default was apparently assessed as no systemic risk. But the subsequent financial

turmoil including the almost complete dry up of the interbank lending market shows that this

was a material misjudgment of the U.S. government; cf. the German Council of Economic Experts

(2008), p. 122. This default clearly demonstrates the relevance of the “too big to fail”-phenomenon

and the negative consequences if a big financial institution still fails, especially in an unstable

market environment.
12For a more detailed discussion of banking regulation see Gup (2000) or Hartmann-Wendels et al.

(2007), p. 355 ff.
13Cf. Phillips and Johnson (2000), p. 5 ff., Hartmann-Wendels et al. (2007), p. 391 ff., Henking

et al. (2006), p. 2 ff., and BCBS (2009a).
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almost the same degree of risk but free capital, which could be used to invest in

new, risky projects. Thus, it is obvious to see that the minimum capital requirements

of Basel I do not effectively reduce the risk-taking behavior of banks.

Against this background, in 1999 the Basel Committee on Banking Supervision

(BCBS) published the First Consultative Package on a New Basel Capital Accord

(Basel II) with a more risk-sensitive framework. Finally, in 2004/05 the Committee

presented the outcome of its work under the title “Basel II: International Conver-

gence of Capital Measurement and Capital Standards – A Revised Framework”

(BCBS 2004c, 2005a). In this context, it is interesting to notice that it was intended

to maintain the overall level of regulatory capital.14 Thus, the purpose of the new

capital rules is indeed to achieve better risk-sensitivity. Basel II is based on “three

mutually reinforcing pillars, which together should contribute to safety and sound-

ness in the financial system”.15 Pillar 1 contains the Minimum Capital Require-

ments, which mainly refer to an adequate capital basis for credit risk, but

operational risk and market risk are considered, too. Pillar 2 is about the Supervi-

sory Review Process. In contrast to Pillar 1, which contains quantitative and

qualitative elements, Pillar 2 contains qualitative requirements only. These refer

to a proper assessment of individual risks – beyond the demands of Pillar 1 – and

sound internal processes in risk management. Important risk types that are not

captured by Pillar 1 are concentration risks, which are the object of investigation

during this study, interest rate risks, and liquidity risks. Pillar 3 shall improve the

market discipline through an enhanced disclosure by banks, e.g. about the calcula-

tion of capital adequacy and risk assessment. The New Basel Capital Accord has

been implemented in the European Union in 2006 via the Capital Requirement

Directive (CRD). Subsequently, the member states of the European Union trans-

posed the directive into national law. In Germany, the corresponding regulations

are basically the “Solvabilit€atsverordnung” (SolvV), which refers to the first

and third Pillar of Basel II, some changes in the “Kreditwesengesetz” (KWG) and

the “Großkredit- und Millionenkreditverordnung” (GroMiKV), as well as the

“Mindestanforderungen an das Risikomanagement” (MaRisk), implementing the

demands of the Pillar 2. These regulations came into effect on 01-01-2007.

As this study deals with credit risk management, only this type of risk will be

considered in the following. In contrast to Basel I, the minimum capital require-

ments of Basel II take the probabilities of default of the individual credits into

consideration. The concrete quantitative requirements are based on a framework

that measures the 99.9%-Value at Risk of a portfolio, which is the loss that will not

be exceeded with a probability of at least 99.9%. The banks are free to choose

the Standardized Approach or the Internal Ratings-Based (IRB) Approach, which

mainly differ concerning the use of external ratings vs. internal estimates of the

obligors’ creditworthiness. Furthermore, for non-retail obligors the IRB Approach

is subdivided into the Foundation IRB Approach and the Advanced IRB Approach.

14BCBS (2001b).
15BCBS (2001b), p. 2.
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While within the Foundation IRB Approach only the probability of default has to be

estimated, banks using the Advanced IRB Approach have to estimate additional

parameters, such as the Loss Given Default and the Exposure at Default, which are

described in the subsequent Sect. 2.2.1.16 In this context, it should be noticed that

the IRB Approach is not only a regulatory set of rules but the underlying framework

often serves as a common fundament in banking practice and for ongoing research

in credit risk modeling with several improvements and applications.17 Against this

background, it is useful to have a deeper understanding of the concrete credit risk

measurement and credit portfolio modeling as a basis of improving the manage-

ment of credit risk. Thus, in the following there will be a short introduction on

individual risk parameters and risk measures in a credit portfolio context, and a

detailed explanation of the framework underlying the IRB Approach.

2.2 Measures of Risk in Credit Portfolios

2.2.1 Risk Parameters and Expected Loss

Before the parameters for the quantification of credit risk are explained, we start

with some short comments about the general notation. In the following, stochastic

variables are marked with a tilde “�”, e.g. ~x denotes that x is a random variable.

Furthermore, “Eð~xÞ” stands for the expectation value and “Vð~xÞ” for the variance of
the random variable ~x. Similarly, “Pð~x ¼ aÞ” denotes the probability that ~x takes the
value a. The random variable 1 ~x> af g, which is also called an indicator variable, is

defined as

1 ~x> af g ¼ 1 if ~x> a;
0 if ~x � a:

�

(2.1)

Thus, the indicator variable takes the value one if the event specified in brackets

occurs, and zero otherwise. Using this notation, the parameters for the quantifica-

tion of credit risk can be introduced. The potential loss of a credit is usually

expressed as a product of three components: The default indicator variable, the

loss given default, and the exposure at default.

16Details concerning the concrete regulatory requirements and a comparison of these approaches

can be found in Heithecker (2007), especially in Sect. 3.
17E.g. the underlying one-factor Gaussian copula model with its implied correlation is market

standard for pricing CDOs, cf. Burtschell et al. (2007), p. 2, similar to the model of Black and

Scholes for options with its implied volatility. Examples for extensions of the standard Gaussian

copula model are Andersen and Sidenius (2005a, b) or Laurent and Gregory (2005). Furthermore,

several smaller banks use the regulatory capital formulas for their internal capital adequacy

assessment process; cf. BCBS (2009b), p. 14.
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Firstly, the default event of an obligor is indicated by the default indicator

variable 1 ~Df g that takes the value one if the (uncertain) default event ~D occurs

and zero otherwise.18 The probability of default (PD) of an obligor is defined by

P 1 ~Df g ¼ 1
� �

¼: PD. In context of the Basel Framework, the PD is the probability

that an obligor defaults within 1 year.19 The Basel Committee on Banking Supervi-

sion defines a default as follows: “A default is considered to have occurred with

regard to a particular obligor when either or both of the two following events have

taken place:

l The bank considers that the obligor is unlikely to pay its credit obligations to the

banking group in full, without recourse by the bank to actions such as realizing

security (if held).
l The obligor is past due more than 90 days on any material credit obligation to the

banking group. Overdrafts will be considered as being past due once the cus-

tomer has breached an advised limit or been advised of a limit smaller than

current outstandings”.20

It is important to notice that beside this definition there exist several other

definitions of default21 so that a credit that is defaulted in Bank A could be treated

as non-defaulted in Bank B. But as the definition above has to be implemented at

least for regulatory purposes, it can be seen as the conjoint definition of default.

Secondly, the loss given default (LGD) gives the fraction of a loan’s exposure

that cannot be recovered by the bank in the event of default. Besides obligor-

specific characteristics the LGD can highly depend on contract-specific character-

istics such as the value of collateral and the seniority of the credit obligation. The

uncertain LGD is denoted by the random variable gLGD, whereas the expected LGD
is denoted by EðgLGDÞ ¼: ELGD. There also exists a direct link between the loss

given default and the so-called recovery rate (RR): fRR ¼ 1� gLGD. Both variables

usually take values between 0% and 100% but the LGD can also be higher than

100% as workout costs occur when the bank tries to recover (parts of) the outstand-

ing exposure. If the bank fails to recover the loan, the total loss amount can be

higher than the defaulted exposure leading to an effective LGD of more than 100%

and to a RR of less than 0%, respectively.

18In this study, it is not explicitly differentiated between a default of a single loan or of a firm. In

this context, it should be noted that for corporates a defaulting loan is usually associated with a

default of the firm; consequently, all other loans of the firm are considered as defaulted, too.

Contrary, in retail portfolios the loans are often handled separately; thus, a default of one loan does

not imply a default of all other loans of this obligor.
19See BCBS (2005a), }} 285, 331.
20BCBS (2005a), } 452. For further details on the definition of default, including a specification of
“unlikeliness to pay” see BCBS (2005a), }} 453–457.
21A survey of different definitions of default and their impact on the computed recovery rates can

be found in Grunert and Volk (2008).
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Thirdly, the exposure at default (EAD) consists of the current outstandings

(OUT), which are already drawn by the obligor. Furthermore, the obligor could

draw a part of the commitments (COMM) leading to an increased EAD. This part

is called the credit conversion factor (CCF). Thus, the (uncertain) EAD can be

defined as22

gEAD :¼ OUT þ gCCF � COMM (2.2)

with 0 � gCCF � 1. Despite the fact that the exposure at default is a random

variable, it is often associated with “the expected gross exposure of the facility

upon default of the obligor”,23 that means

EAD :¼ OUT þ E gCCF
� �

� COMM: (2.3)

In this study, the exposure at default is mostly assumed to be deterministic,

which leads to identity of the random variable gEAD and the expected value EAD.
Using these three components, we can quantify the loss of a single credit or of a

credit portfolio (PF) that consists of n different loans. The loss in absolute values of
a single credit i 2 f1; :::; ng is denoted by ~Labs;i:

~Labs;i ¼ gEADi � gLGDi � 1 ~Dif g: (2.4)

Thus, a default of loan i leads to an uncertain loss amount of gEADi � gLGDi, which

is the fraction LGD of the exposure at default. Similarly, we name the absolute loss

of the whole portfolio ~Labs;PF, which can be calculated as the sum of all individual

losses:

~Labs;PF ¼
X

n

i¼1

~Labs;i ¼
X

n

i¼1

gEADi � gLGDi � 1 ~Dif g: (2.5)

The expected loss ELabs;i of loan i is given by

ELabs;i ¼ E ~Labs;i
� � ¼ E gEADi � gLGDi � 1 ~Dif g

� �

¼ EADi � ELGDi � PDi; (2.6)

assuming the random variables to be stochastically independent. The expected loss

(EL) is also called “standard risk-costs” and the risk premium contained in the

22See Bluhm et al. (2003), p. 24 ff.
23BCBS (2005a), } 474.
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contractual interest rate should at least include this amount.24 The expected loss of

the whole portfolio ELabs;PF can be calculated as

ELabs;PF ¼
X

n

i¼1

ELabs;i ¼
X

n

i¼1

EADi � ELGDi � PDi: (2.7)

Moreover, we differentiate between the absolute and the relative portfolio loss

since it is often useful to write the loss in relative terms in analytical credit risk

modeling. The relative portfolio loss results when the absolute loss is divided by

the total exposure, and will simply be denoted by ~L in the following:

~L ¼
~Labs;PF
P

n

j¼1

gEADj

¼
X

n

i¼1

gEADi

P

n

j¼1

gEADj

� gLGDi � 1 ~Dif g ¼
X

n

i¼1

~wi � gLGDi � 1 ~Dif g; (2.8)

where ~wi :¼ gEADi

�

P

n

j¼1

gEADj is the exposure weight of credit i in the portfolio.

Using this notation and assuming deterministic exposure weights

wi ¼ EADi

�

P

n

j¼1

EADj, the expected relative portfolio loss can be written as

EL ¼
X

n

i¼1

wi � ELGDi � PDi: (2.9)

2.2.2 Value at Risk, Tail Conditional Expectation,
and Expected Shortfall

For an individual loan, the expected loss is the most important risk measure as it

significantly influences the contractual interest rate. However, on aggregate portfo-

lio level the quantification of additional risk measures is worthwhile. For instance, it

is useful for a bank to get knowledge of the possible portfolio loss in some kind of

worst case scenario, which is usually defined with respect to a given confidence

level a. Based on this, a bank can determine how much capital is needed to survive

such scenarios. There exist several approaches to quantify these capital require-

ments. Firstly, there are different measures for risk quantification, e.g. the Value at

Risk, the Tail Conditional Expectation, and the Expected Shortfall, which will be

defined and explained below. Secondly, the capital requirements differ depending

on their objective. In Basel II the regulatory capital requirement is based on the

unexpected loss, which is the difference between the Value at Risk with confidence

24Cf. Schroeck (2002), p. 171 f.
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level a ¼ 99:9% and the EL,25 within a 1-year horizon. Furthermore, banks often

internally measure their economic capital requirement, which can be defined as the

capital level that bank shareholders would choose in absence of capital regulation.26

The economic capital is usually used for the bank’s risk management, the pricing

system, the internally defined minimum capital requirement, etc.27 The internal

specification of economic capital can differ from the regulatory capital formula, for

instance, regarding the used risk measure, the engine for generating the loss

distribution, or the time horizon.28

For a definition of the risk measures, a mathematical formulation of quantiles, or
precisely of the upper quantile qa and the lower quantile qa, corresponding to a

confidence level a is needed. Given the distribution of a random variable ~X, these
quantiles are defined as29

qa ~X
� �

:¼ inf x 2 RjP ~X � x
� 	 � a


 �

; (2.10)

qa ~X
� �

:¼ inf x 2 RjP ~X � x
� 	

> a

 �

; (2.11)

where R denotes the set of real numbers. If these definitions are applied to

continuous distributions, they lead to the same result. Applied to discrete distribu-

tions, the upper quantile can exceed the lower quantile.

The Value at Risk (VaR) can be described as “the worst expected loss over a

given horizon under normal market conditions at a given confidence level”.30 For

an exact formulation, the lower Value at Risk VaRað~LÞ and the upper Value at Risk
VaRað~LÞ at confidence level a have to be distinguished, which are the quantiles of

the loss distribution:31

VaRa ~L
� �

:¼ qa ~L
� � ¼ inf l 2 RjP ~L � l

� 	 � a

 �

; (2.12)

VaRa ~L
� �

:¼ qa ~L
� � ¼ inf l 2 RjP ~L � l

� 	

> a

 �

: (2.13)

25Sometimes the unexpected loss is defined as UL ¼
ffiffiffiffiffiffiffiffiffiffiffi

V ~L
� �

q

instead; see e.g. Bluhm et al. (2003),

p. 28.
26See Elizalde and Repullo (2007).
27Cf. Jorion (2001), p. 383 ff.
28An extensive overview of current practices in economic capital definition and modeling can be

found in BCBS (2009b).
29Acerbi and Tasche (2002b), p. 1489.
30Jorion (2001), p. xxii. The first known use of the Value at Risk is in the late 1980s by the global

research at J.P. Morgan but the first widely publicized appearance of the term was 1993 in the

report of the Group of Thirty (G-30), which discussed best risk management practices; cf. Jorion

(2001), p. 22.
31Cf. Acerbi (2004), p. 155. The slightly different notation results from the definition of l as a loss
instead of a profit variable.
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For continuous distributions, the definitions are identical and with the definition

of a distribution function FLðlÞ ¼ P ~L � l
� �

the VaR can also be written in terms of

the inverse distribution function:

VaRa ~L
� �¼ inf l 2 RjP ~L � l

� 	 � a

 �

¼ l with P ~L � l
� 	 ¼ a

¼ l with FLðlÞ ¼ a

¼ F�1
L að Þ: (2.14)

For discrete distributions, the term “Value at Risk” will be referred to the lower

Value at Risk VaRað~LÞ in the following, according to Gordy (2003) and Bluhm et al.

(2003), if not indicated differently. Using P½ ~L � l� ¼ 1� P½ ~L> l�, it follows from
(2.12) that

VaRa ~L
� � ¼ inf l 2 Rj1� P ~L> l

� 	 � a

 �

¼ inf l 2 RjP ~L> l
� 	 � 1� a


 �

: (2.15)

From this definition the description of the VaR as the minimal loss in the worst

100 � ð1� aÞ% scenarios can best be seen.32 Obviously, this risk measure refers to a

concrete quantile of a distribution but neglects the possible losses that can occur in

the worst 100 � ð1� aÞ% scenarios.

A risk measure that incorporates these low-probable extreme losses, the so-

called tail of the distribution, is the Tail Conditional Expectation (TCE). Similar to

(2.12) and (2.13) the lower Tail Conditional Expectation TCEað~LÞ and the upper

Tail Conditional Expectation TCEað~LÞ at confidence level a are defined as the

conditional expectations above the corresponding a-quantiles:33

TCEa ~L
� �

:¼ E ~Lj ~L � qa
� � ¼

E ~L � 1 ~L� qaf g
� �

P ~L � qa
� � ; (2.16)

TCEa ~L
� �

:¼ E ~Lj~L � qa
� � ¼

E ~L � 1 ~L� qaf g
� �

P ~L � qa
� � : (2.17)

Consequently, the TCE is always higher than the corresponding VaR at a given

confidence level and can differ for discrete distributions according to the definition

32Cf. Acerbi (2004), p. 153.
33Acerbi and Tasche (2002b), p. 1490. The loss quantiles qað~LÞ and qað~LÞ are abbreviated with qa
and qa, respectively, to achieve a shorter notation.
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of the quantile. For continuous distributions, the upper and lower quantiles are

identical and therefore both definitions of TCE equal:

TCEa
cont

~L
� � ¼ TCEa;cont ~L

� � ¼ E ~Lj~L � qa
� � ¼

E ~L � 1 ~L� qaf g
� �

P ~L � qa
� �

¼ 1

1� a
E ~L � 1 ~L� qaf g
� �

: (2.18)

Acerbi and Tasche (2002b) introduced a similar risk measure, the Expected
Shortfall (ES):34

ESa ~L
� �

:¼ 1

1� a
� E ~L � 1 ~L� qaf g

� �

� qa � P ~L � qa
� �� ð1� aÞ� �

� �

: (2.19)

In contrast to the VaR and the TCE, the ES only depends on the distribution and

the confidence level a but not on the definition of the quantile. Looking at the

second term, if the probability that ~L � qa is higher than ð1� aÞ, this fraction has to
be subtracted from the conditional expectation. If the probability equals ð1� aÞ, as
for every continuous distribution, the second term vanishes. In this case, the ES is

identical to the TCE. An alternative representation of (2.19) is:35

ESa ~L
� � ¼ 1

1� a

ð

1

a

qudu: (2.20)

The intuition behind the ES and the difference between TCE and ES can be

demonstrated with the exemplary probability mass function of a discrete random

variable shown in Table 2.1 and the corresponding Fig. 2.1.

In this example, the upper as well as the lower VaR at confidence level a ¼ 0:95
is 7%. The corresponding TCE is the expectation conditional on a loss of greater or

equal to 7%, which is 7:�4% in the example. As can be seen in the figure, the

probability of the considered events is not equal to 5% but 9%. In contrast to

the TCE, for the calculation of the ES, the light grey area is subtracted, which is the

Table 2.1 Loss distribution

for an exemplary portfolio
Relative Loss l (in %) 2 4 5 7 8

P ~L ¼ l
� �

80% 10% 1% 5% 4%

P ~L � l
� �

80% 90% 91% 96% 100%

P ~L � l
� �

100% 20% 10% 9% 4%

34Acerbi and Tasche (2002b), p. 1491.
35Acerbi and Tasche (2002b), p. 1492.
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second term of (2.19), and only the dark grey area with a probability of 5% is

considered. Thus, the ES is usually higher than the TCE and here we have an ES of

7.8%. Moreover, we can see that the VaR as well as the TCE make a jump if the

confidence level is increased from slightly below to slightly above 96%, whereas

the ES remains stable because the weight of 7% losses only changes from almost

zero to exactly zero.

Subsequently, the calculation of the different risk measures will be demonstrated

for the discrete loss distribution of Table 2.1. For this purpose, the confidence levels

a ¼ 0:9 and a ¼ 0:95 are chosen. The upper and lower VaR at these confidence

levels are given as

VaR0:9
~L
� � ¼ q0:9 ~L

� � ¼ inf l 2 RjP ~L � l
� 	 � 0:9


 � ¼ 4%;

VaR0:9 ~L
� � ¼ q0:9 ~L

� � ¼ inf l 2 RjP ~L � l
� 	

> 0:9

 � ¼ 5%;

VaR0:95
~L
� � ¼ q0:95 ~L

� � ¼ 7%;

VaR0:95 ~L
� � ¼ q0:95 ~L

� � ¼ 7%:

It can be seen that the upper and lower VaR are different if there exists a loss

outcome l with PðlÞ> 0 so that P ~L � l
� 	 ¼ a. The same is true for the

corresponding TCEs:
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Fig. 2.1 Probability mass function of portfolio losses for an exemplary portfolio
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TCE0:9
~L
� �¼

E ~L � 1 ~L�q0:9f g
� �

P ~L� q0:9
� � ¼ 1

0:2
0:1 � 4þ 0:01 � 5þ 0:05 � 7þ 0:04 � 8ð Þ ¼ 5:6%;

TCE0:9 ~L
� �¼

E ~L � 1 ~L�q0:9f g
� �

P ~L� q0:9
� � ¼ 1

0:1
0:01 � 5þ 0:05 � 7þ 0:04 � 8ð Þ ¼ 7:2%;

TCE0:95
~L
� � ¼ 1

0:09
0:05 � 7þ 0:04 � 8ð Þ ¼ 7:�4%;

TCE0:95 ~L
� � ¼ 1

0:09
0:05 � 7þ 0:04 � 8ð Þ ¼ 7:�4%:

According to (2.19), there is only one definition of ES, which results in

ES0:9 ~L
� �¼ 1

1�0:9
E ~L �1 ~L�q0:9f g
h i

�q0:9 P ~L� q0:9
� 	�ð1�0:9Þ� 	

� �

¼ 1

1�0:9
0:1 �4þ0:01 �5þ0:05 �7þ0:04 �8½ ��4 � 0:2�0:1½ �ð Þ¼ 7:2%;

ES0:95 ~L
� �¼ 1

1�0:95
0:05 �7þ0:04 �8½ ��7 � 0:09�0:05½ �ð Þ¼ 7:8%:

For demonstration purposes, an ES-definition based on the upper instead of the

lower quantile is calculated, too:

ES0:9 ~L
� � ¼ 1

1� 0:9
E ~L � 1 ~L� q0:9f g
h i

� q0:9 P ~L � q0:9
� 	� ð1� 0:9Þ� 	

� �

¼ 1

1� 0:9
0:01 � 5þ 0:05 � 7þ 0:04 � 8½ � � 5 � 0:1� 0:1½ �ð Þ ¼ 7:2%;

ES0:95 ~L
� � ¼ 1

1� 0:95
0:05 � 7þ 0:04 � 8½ � � 7 � 0:09� 0:05½ �ð Þ ¼ 7:8%:

It can be seen that the definitions based on the upper as well as on the lower

quantile lead to the same result, even if the calculation itself differs for a ¼ 0:9.

2.2.3 Coherency of Risk Measures

As demonstrated in Sect. 2.2.2, there exist several measures that could be used for

quantifying credit portfolio risk. To identify suitable risk measures, it is reasonable

to analyze which mathematical properties should be satisfied by a risk measure to

correspond with rational decision making. Based on this, it is possible to evaluate

different measures concerning their ability to measure risk in the desired way.

Against this background, Artzner et al. (1997, 1999) define a set of four axioms and

call the risk measures which satisfy these axioms “coherent”. Some authors even
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mention that these axioms are the minimum requirements which must be fulfilled

by a risk measure and therefore do not distinguish between coherent and non-

coherent risk measures but denominate only measures that satisfy these axioms

“risk measures”.36

For a mathematical description of these properties, it is assumed that G is as set

of real-valued random variables (for instance the losses of a set of credits). A

function r : G ! R is called a coherent risk measure if the following axioms are

satisfied:37

(A) Monotonicity: 8~L1; ~L2 2 G with ~L1 � ~L2 ) rð~L1Þ � rð~L2Þ.
This means that if the losses of portfolio 1 are smaller than the losses of portfolio

2, then the risk of portfolio 1 is smaller than the risk of portfolio 2.

(B) Subadditivity: 8~L1; ~L2 2 G ) rð~L1 þ ~L2Þ � rð~L1Þ þ rð~L2Þ.
This axiom reflects the positive effect of diversification. If two portfolios are

aggregated, the combined risk should not be higher than the sum of the

individual risks. This also means that a merger does not create extra risk. If

this axiom is not fulfilled, there is an incentive to reduce the measured risk by

asset stripping. Another positive effect is the enabling of a decentralized risk

management. If the risk measure r is interpreted as the amount of economic

capital that is required as a cushion against the portfolio loss, each division of

an institution could measure its own risk and could have access to a specified

amount of economic capital because the sum of the measured risk or required

capital is an upper barrier of the aggregated risk or required capital.

(C) Positive homogeneity: 8~L 2 G; 8h 2 R
þ ) rðh � ~LÞ ¼ h � rð~LÞ.38

If a multiple h of an amount is invested into a position, the resulting loss and the

required economic capital will be a multiple h of the original loss, too. It is

important to notice that this axiom is not necessarily valid for liquidity risk.39

36See e.g. Szegö (2002), p. 1260, and Acerbi and Tasche (2002a), p. 380 f.
37Cf. Artzner et al. (1999), p. 209 ff. The definition of the axioms is slightly different from the

original set because here the variables ~L1, ~L2 correspond to a portfolio loss instead of a future net

worth of a position; see also Bluhm et al. (2003), p. 166. Moreover, it has to be noted that within

the axioms of coherency the loss variables ~L; ~Li refer to absolute instead of relative losses.
38
R

þ denotes all real numbers greater than zero.
39The liquidity risk argument is: “If I double an illiquid portfolio, the risk becomes more than

double as much!”; see Acerbi and Scandolo (2008), p. 3. Therefore, axiom (B) and (C) are

sometimes replaced by a single weaker requirement of convexity: 8~L1; ~L2 2 G;8h 2 ½0; 1� )
r h � ~L1 þ 1� hð Þ � ~L2
� � � h � r ~L1

� �þ 1� hð Þ � r ~L2
� �

; cf. Carr et al. (2001), Frittelli and Rosazza

Gianin (2002) or Föllmer and Schied (2002). Acerbi and Scandolo (2008) agree with the statement

above but they deny that the coherency axioms are contradicted by this. They argue that the axiom

has to be interpreted in terms of portfolio values and not of portfolios. In liquid markets the

relationship between a portfolio and the value is linear (“if I double the portfolio I double the

value”), and therefore there is no difference whether thinking about portfolios or portfolio values.

However, in illiquid markets the value function is usually non-linear. Based on a proposal of a
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(D) Translation invariance: 8~L 2 G; 8m 2 R ) rð~Lþ mÞ ¼ rð~LÞ þ m:

If there is an amountm in the portfolio that is lost at the considered horizon with

certainty, then the risk is exactly this amount higher than without this position.

In the following, it will be shown that the VaR is not a coherent risk measure

as it lacks of subadditivity. The same is true for the TCE if the distribution is

discrete.40 However, the ES satisfies all four axioms and therefore is a (coherent)

risk measure.

The monotonicity of the VaR directly follows from its definition. If a stochastic

variable ~e � 0 is introduced so that ~L1 þ ~e ¼ ~L2, it follows that

VaRa ~L1
� � ¼ inf l 2 RjP ~L1 � l

� 	 � a

 �

� inf l 2 RjP ~L1 � l� ~e
� 	 � a


 �

¼ inf l 2 RjP ~L2 � l
� 	 � a


 �

¼ VaRa ~L2
� �

:

(2.21)

To show the positive homogeneity, a variable l ¼ h � x is introduced so that it

follows 8~L 2 G and 8h 2 R
þ:

VaRa h � ~L� � ¼ inf l 2 RjP h � ~L � l
� 	 � a


 �

¼ h � inf x 2 RjP h � ~L � h � x� 	 � a

 �

¼ h � VaRa ~L
� �

:

(2.22)

Furthermore, the VaR is translation invariant since 8~L 2 G and with l ¼ xþ m
we obtain:

VaRa ~Lþ m
� � ¼ inf l 2 RjP ~Lþ m � l

� 	 � a

 �

¼ inf x 2 RjP ~Lþ m � xþ m
� 	 � a


 �þ m

¼ VaRa ~L
� �þ m:

(2.23)

The lack of subadditivity of the VaR is sufficient to be shown by an example. It is

assumed that a loan A and a loan B both have a PD of 6%, an LGD of 100%, and an

EAD of 0.5. The VaR at confidence level 90% of each loan is

VaR0:9
~LA
� � ¼ VaR0:9

~LB
� � ¼ 0: (2.24)

formalism for liquidity risk and a proposed non-linear value function, the authors show that

liquidity risk is compatible with the axioms of coherency. Further they show that convexity is

not a new axiom but a result of the other axioms under their formalism.
40Cf. Acerbi and Tasche (2002b), p. 1499, for an example. As the rest of the study focuses on the

VaR and the ES, only these risk measures will be analyzed regarding coherency.
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If both loans are aggregated into a portfolio, the risk should be smaller or equal

to the sum of the individual risks. Assuming that the default events are independent

of each other, the probability distribution is given as

P ~LA þ ~LB ¼ 0
� � ¼ 1� 0:06ð Þ2 ¼ 88:36%;

P ~LA þ ~LB ¼ 0:5
� � ¼ 0:06 � 1� 0:06ð Þ þ 1� 0:06ð Þ � 0:06 ¼ 11:28%;

P ~LA þ ~LB ¼ 1
� � ¼ 0:062 ¼ 0:36%:

(2.25)

Thus, the VaR at confidence level 90% of the portfolio is

VaR0:9
~LA þ ~LB
� � ¼ 0:5 (2.26)

leading to

VaR0:9
~LA þ ~LB
� �

>VaR0:9
~LA
� �þ VaR0:9

~LB
� �

: (2.27)

This shows that the VaR can be superadditive and thus it is not a coherent risk

measure. An important exception is the class of elliptical distributions, e.g. the

multivariate normal distribution and the multivariate student’s t-distribution, for

which the VaR is indeed coherent.41 As credit risk usually cannot be sufficiently

described by elliptical distributions, the lack of coherency can be very critical.

To demonstrate the coherency of ES, it is helpful to use a further representation

of (2.19). The purpose is to integrate the second term of (2.19) into the expectation

of the first term. Defining a variable 1a ~L�qaf g that is

1a ~L�qaf g :¼
1 ~L�qaf g if P ~L ¼ qa

� 	 ¼ 0;

1 ~L�qaf g � P ~L�qa½ �� 1�að Þ
P ~L¼qa½ � � 1 ~L¼qaf g if P ~L ¼ qa

� 	

> 0;

8

<

:

(2.28)

the ES can be written as42

ESa ~L
� � ¼ 1

1� a
� E ~L � 1a ~L�qaf g
 �

: (2.29)

For the proof of coherency the following properties will be used:43

E 1a ~L�qaf g
 �

¼ 1� a; (2.30)

41Cf. Embrechts et al. (2002). An interesting result is that under the standard assumption of

normally distributed returns, Markowitz m–s-efficient portfolios are also m–VaR-efficient.
42Cf. Acerbi et al. (2001), p. 8, and Acerbi and Tasche (2002b), p. 1493. For a formal proof see

Appendix 2.8.1.
43These properties are derived in Appendix 2.8.1, too. See also Acerbi et al. (2001) for a proof

based on the ES-definition using upper instead of lower quantiles.
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1a ~L�qaf g 2 0; 1½ �: (2.31)

From definition (2.28) and property (2.31) it can be seen that the variable

1a ~L�qaf g is not the “normal” indicator function but can also take values between

zero and one. Subsequently, the coherency of ES will be shown.44 Themonotonicity
of the ES can easiest be shown with the integral representation (2.20). It has already

been shown that qað~L1Þ � qað~L2Þ for ~L1 � ~L2 and it can be seen from (2.21) that the

same is true for qað~L1Þ � qað~L2Þ. Therefore, it follows

ESa ~L1
� � ¼ 1

1� a

ð

1

a

qu ~L1
� �

du

� 1

1� a

ð

1

a

qu ~L2
� �

du ¼ ESa ~L2
� �

:

(2.32)

Using the positive homogeneity of the quantile from (2.22), the ES can shown to

be positive homogeneous as well:

ESa h � ~L� � ¼ 1

1� a
� E h � ~L � 1a

h�~L�qa h� ~Lð Þf g
 �

¼ 1

1� a
� E h � ~L � 1a ~L�qa ~Lð Þf g
 �

¼ h � ESa ~L
� �

:

(2.33)

The translation invariance can be obtained using E 1a ~L�qaf g
 �

¼ 1� a (see

(2.30)):

ESa ~Lþ m
� � ¼ 1

1� a
� E ~Lþ m

� � � 1a ~Lþmð Þ�qa ~Lþmð Þf g
 �

¼ 1

1� a
� E ~Lþ m

� � � 1a ~L�qa ~Lð Þf g
 �

¼ 1

1� a
� E ~L � 1a ~L�qa ~Lð Þf g
 �

þ m

1� a
� E 1a ~L�qa ~Lð Þf g
 �

¼ ESa ~L
� �þ m:

(2.34)

44See also Acerbi and Tasche (2002b).
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It remains to show the subadditivity of the ES. Introducing the random variables
~L1, ~L2 and ~L3 ¼ ~L1 þ ~L2, the following statement has to be true:

ESa ~L1
� �þ ESa ~L2

� �� ESa ~L3
� � � 0: (2.35)

Using representation (2.29) and multiplying by ð1� aÞ leads to

E ~L1 � 1a ~L1�qa ~L1ð Þf g þ ~L2 � 1a ~L2�qa ~L2ð Þf g � ~L3 � 1a ~L3�qa ~L3ð Þf g
 �

¼ E ~L1 � 1a ~L1�qa ~L1ð Þf g � 1a ~L3�qa ~L3ð Þf g
� �

þ ~L2 � 1a ~L2�qa ~L2ð Þf g � 1a ~L3�qa ~L3ð Þf g
� � �

:

(2.36)

If the terms in brackets are analyzed, we find that

1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g ¼
1� 1a ~L3�qa ~L3ð Þf g � 0 if ~Li > qa ~Li

� �

;

0� 1a ~L3�qa ~L3ð Þf g � 0 if ~Li < qa ~Li
� �

;

8

<

:

(2.37)

with i 2 ½1; 2�, due to the fact that 1a ~L�qaf g 2 0; 1½ �. Consequently, we have

~Li � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g
� �

� qa ~Li
� � � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g

� �

if ~Li>qa ~Li
� �

;

~Li � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g
� �

� qa ~Li
� � � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g

� �

if ~Li<qa ~Li
� �

;

~Li � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g
� �

¼ qa ~Li
� � � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g

� �

if ~Li ¼ qa ~Li
� �

;

(2.38)

and therefore

~Li � 1a ~Li � qa ~Lið Þf g � 1a ~L3 � qa ~L3ð Þf g
� �

� qa ~Li
� � � 1a ~Li � qa ~Lið Þf g � 1a ~L3 � qa ~L3ð Þf g

� �

:

(2.39)
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Using this inequality and again E 1a ~L� qaf g
 �

¼ 1� a according to (2.30), we

find that

E ~L1 � 1a ~L1�qa ~L1ð Þf g � 1a ~L3�qa ~L3ð Þf g
� �

þ ~L2 � 1a ~L2�qa ~L2ð Þf g � 1a ~L3�qa ~L3ð Þf g
� � �

� qa ~L1
� � � E 1a ~L1�qa ~L1ð Þf g

 �

� E 1a ~L3�qa ~L3ð Þf g
 �� �

þ qa ~L2
� � � E 1a ~L2�qa ~L2ð Þf g

 �

� E 1a ~L3�qa ~L3ð Þf g
 �� �

¼ qa ~L1
� � � 1� að Þ � 1� að Þð Þ þ qa ~L2

� � � 1� að Þ � 1� að Þð Þ
¼ 0:

(2.40)

Thus, in contrast to the VaR, the ES is subadditive. Since all four axioms are

fulfilled, the ES is indeed a coherent risk measure. In addition to the ES, there exist

several other coherent risk measures. A class of coherent risk measures is given by

the so-called spectral measures of risk with the ES as a special case. This class

allows defining a risk-aversion function which leads to different coherent risk

measures provided that the risk-aversion function satisfies some conditions pre-

sented by Acerbi (2002).45 However, for the rest of this study the focus will be on

the (non-coherent) VaR and the (coherent) ES.

2.2.4 Estimation and Statistical Errors of VaR and ES

Only in minor cases the VaR and the ES will directly be calculated by (2.15) and

(2.19), respectively. In real-world applications, the risk measures will mostly be

computed via historical simulation or Monte Carlo simulation. In a historical
simulation, the probability distribution of the loss variable or of several risk factors
is assumed to be identical to the empirical distribution of a defined period. More-

over, it is assumed that the realizations are independent of each other. For example,

future scenarios will be generated by drawing from J ¼ 52 historically observed

weekly returns with identical probability. In aMonte Carlo simulation, there exists
an analytic description of the risk drivers and the dependency between risk drivers

and portfolio loss but there is no well-known closed form solution of the probability

distribution of the portfolio loss. Thus, a large number J of scenarios can be

generated by drawing J independent outcomes of the risk drivers. Using the

known dependence structure, J outcomes of the portfolio loss can be computed,

which build the simulation-based probability distribution of the portfolio loss.

45See also Acerbi (2004), p. 168 ff.
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This simulation-based distribution converges towards the exact portfolio distribu-

tion as J ! 1.

For a historical simulation as well as for a Monte Carlo simulation, the result is

given as a sequence Lj

 �

j¼1;:::;J
, where each Lj is a realization of the portfolio loss

variable ~L. Based on this, the empirical distribution is defined as46

FðJÞðlÞ ¼ P ~L � l
� 	 ¼ 1

J
�
X

J

j¼1

1 Lj�lf g: (2.41)

For computation of the corresponding VaR and ES, it is useful to introduce the

so-called order statistics Lj:J

 �

j¼1;:::;J
. Therefore, the sample is sorted into an

increasing order such that

L1:J � L2:J � ::: � LJ:J: (2.42)

Now, let xb c and xd e denote the floor function and the ceiling function of a real

number x 2 R:

xb c ¼ max n 2 Zjn � xf g; (2.43)

xd e ¼ min n 2 Zjn � xf g; (2.44)

where Z denotes the set of all integers. Then, using the definition of the lower VaR

(2.12) and the upper VaR (2.13), the empirical estimator of VaR is given as47

VaR
ðJÞ
a ~L
� � ¼ VaRaðJÞ ~L

� � ¼ L J�ad e:J if J � a =2Z;

VaR
ðJÞ
a ~L
� � ¼ LJ�a:J

VaRaðJÞ ~L
� � ¼ LJ�aþ1:J

)

if J � a 2 Z:
(2.45)

This means that except for special cases the VaR is simply given by the J � a-th
element (rounded up) of the ordered loss sequence. An important characteristic of

the empirical estimator is its consistency for large J if the lower VaR equals the

upper VaR:

lim
J!1

VaRðJÞ
a

~L
� � ¼ VaRa ~L

� � ¼ VaRa ~L
� �

: (2.46)

Otherwise the empirical estimators of VaR “flip between the possible values

VaRað~LÞ and VaRað~LÞ”.48

46Cf. Acerbi (2004), p. 166.
47Cf. also Acerbi (2004), p. 167.
48Acerbi (2004), p. 168. This can be illustrated by the “head-or-tail”-example of Acerbi (2004).

Let both equiprobable events be related to the loss of {–1, 0}. The VaRs are given as VaR0:5 ¼ �1

and VaR0:5 ¼ 0 but even for large J the 50%-quantile neither converges to –1 nor to 0 but flips

between these values.
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The empirical estimator of ES can be determined with49

ESðJÞa
~L
� � ¼ 1

J � ð1� aÞ �
X

J

j¼ J�ad e
Lj:J � J � a� J � ab cð Þ � L J�ad e:J

0

@

1

A: (2.47)

In the example of J ¼ 52 weekly returns, the 90%-ES can be computed as

ESð52Þa
~L
� � ¼ 1

5:2
�
X

52

j¼47

Lj:52 � 46:8� 46ð Þ � L47:52
 !

: (2.48)

This shows that the ES can be interpreted as the average loss in the worst 5.2

scenarios. As can be seen from (2.47), the last term is negligible if J is large. Thus,
for historical simulation with a relatively small number of scenarios it is important

to consider this term whereas it could be neglected in Monte Carlo simulations

since there is typically a very large number of generated scenarios. When J � a 2 Z,

the empirical estimator simplifies to

ESðJÞa
~L
� � ¼ 1

J � ð1� aÞ �
X

J

j¼J�aþ1

Lj:J: (2.49)

Acerbi and Tasche (2002b) showed that the estimator for the ES is consistent for

large J:

lim
J!1

ESðJÞa
~L
� � ¼ ESa ~L

� �

: (2.50)

As shown in the previous sections, the ES has some significant theoretical

advantages in comparison with the VaR. But from a practical perspective, the ES

is often criticized to be much less robust than the VaR. Consequently, the theoreti-

cal advantages of ES could be useless if the number of observations was limited,

and thus the VaR would be a much more reliable risk measure than the ES. The

standard argument is reproduced by Acerbi (2004) as follows: “VaR does not even

try to estimate the leftmost tail events, it simply neglects them altogether, and

therefore it is not affected by the statistical uncertainty of rare events. ES on the

contrary, being a function of rare events also, has a much larger statistical error”.

Against this background, Acerbi (2004) analyzes the statistical errors of VaR

49Cf. Acerbi (2004), p. 166 f.
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and ES. For continuous distributions of a random variable ~X, the variances of the
estimators for large J are given as50

V VaRðJÞ
a

~X
� �

� �

¼J�1 1

J
� a � 1� að Þ
f F�1 að Þð Þ2 ; (2.51)

V ESðJÞa
~X
� �

� �

¼J�1 1

J � ð1� aÞ2 �
ð

F�1ðaÞ

y¼0

ð

F�1ðaÞ

z¼0

min FðyÞ;FðzÞ � FðyÞ � FðzÞð Þdz dy;

(2.52)

where F denotes the cumulative distribution function (CDF) of ~X, F�1 is the inverse

CDF, and f ¼ dF=dx stands for the probability density function (PDF). From (2.51)

and (2.52), it can be seen that the estimator of VaR as well as the estimator of ES

have the same dependence on the number of trials J. For both estimators, the

precision in terms of standard deviation of the demanded statistics can be improved

by factor m if the number of trials is increased by factor m2. However, even if

the standard deviations of the estimators are in both cases of order Oð1 ffiffiffi

J
p� Þ,51 the

constant factors could be very different. Therefore, Acerbi (2004) compares the

relative error of VaR and of ES for several heavy-tailed probability distributions

and confidence levels.52 He finds that in most cases the relative errors of VaR and

ES are very similar. Only in some cases the relative error of ES is at most twice as

much as the error of VaR at very high confidence levels. Even if the results of this

analysis need not to be true in general, VaR and ES seem to have similar statistical

errors and therefore there is no practical burden in implementing the ES instead of

the VaR.

2.3 The Unconditional Probability of Default Within

the Asset Value Model of Merton

In order to measure the risk of a credit portfolio according to (2.8), it is necessary

to specify the stochastic dependence of loan defaults. A widely-used model is the

Vasicek model,53 which is based on the asset value model of Merton (1974). In

this type of model it is assumed that a firm does not default as a consequence of

insufficient liquidity at the moment of repaying a credit because the firm could sell a

50Cf. Acerbi (2004), p. 200 f.
51The Landau symbol Oð�Þ is defined as in Billingsley (1995), p. 540, A18.
52The analyses are performed for lognormal distributions with different volatility parameters and

for power law distributions with different shape parameters.
53See e.g. Vasicek (1987, 1991, 2002) and Finger (1999, 2001).
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part of its assets or it could issue stocks or bonds in order to repay the credit. This

can be done as long as the value of liabilities is higher than the value of assets

because thenceforward the market participants will not be willing to pay for a

security of the firm. Thus, it is assumed that a firm defaults if the asset value ~AT is

lower than the value of liabilities B payable at time T: ~AT <B.54 Consequently, the
probability of default is given by

PD ¼ P ~AT <B
� �

: (2.53)

The asset value A is modeled as a geometric Brownian motion:55

dAt ¼ mAt dtþ sAt dWt with dWt ¼ ~e
ffiffiffiffi

dt
p

; ~e � Nð0; 1Þ; (2.54)

using the drift rate m, the volatility s and the standard Wiener process dWt.
56

In order to get a closed form solution of the distribution of the asset value at time

T, Itô’s Lemma is applied to (2.54) leading to57

dYt ¼ d lnAt ¼ m� 1

2
s2

� �

dtþ s dWt: (2.55)

This shows that the logarithm of the asset value follows a generalized Wiener

process with drift rate m� 1 2= s2 and variance rate s2. As the logarithm of the asset

value is normally distributed, the asset value is lognormally distributed. The

distribution of the asset value at time T results by integration of (2.55) from t ¼ 0

to t ¼ T:

ln
~AT

A0

� �

¼ ln ~AT � lnA0 ¼
ð

T

t¼0

d lnAt

¼
ð

T

t¼0

m� 1

2
s2

� �

dtþ
ð

T

t¼0

sdWt

¼ m� 1

2
s2

� �

T þ s ~WT �W0

� �

, ~AT ¼ A0 � exp m� 1

2
s2

� �

T þ s ~WT

 �

;

(2.56)

54As can be seen by this expression, the liabilities are assumed to have the structure of a zero

coupon bond that has to be paid completely at time T.
55A normal distribution with expectation m and variance s2 is indicated by Nðm; s2Þ. Thus, the
expression ~e � Nð0; 1Þ denotes that ~e follows a standard normal distribution.
56For details to the Wiener process see Hull (2006), p. 328 ff.
57See Appendix 2.8.2.
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using the characteristic of a Wiener process W0 ¼ 0. Using this distribution of the

assets at time T from (2.56) and the definition of the Wiener process, the probability

of default (2.53) can be calculated:58

PD ¼ P ~AT <B
� �

¼ P ln
~AT

A0

� �

< ln
B

A0

� �� �

¼ P m� 1

2
s2

� �

T þ s ~WT < ln
B

A0

� �� �

¼ P ~e �
ffiffiffi

T
p

<
ln B

A0

� �

� m� 1
2
s2

� �

T

s

0

@

1

A

¼ P ~e< � ln A0

B

� �þ m� 1
2
s2

� �

T

s � ffiffiffi

T
p

 !

¼ F � ln A0

B

� �þ m� 1
2
s2

� �

T

s � ffiffiffi

T
p

 !

¼: F �dð Þ:

(2.57)

This expression is also known from the Black–Scholes formula of option

pricing.59 The variable d is called “distance to default”, as a high value of d
indicates a high equity buffer before a default event can happen. As can be seen

in (2.57), the distance to default is higher if the relation of asset to liability value and

the drift rate are high and the volatility is low. The problem of asset value models is

that the asset value process is not observable and therefore the model cannot easily

be calibrated. For firms listed on the stock exchange, the equity values can be

observed instead. Therefore, several approaches have been developed for a trans-

formation of equity into asset values.60

There also exist several extensions of the asset value model of Merton (1974).

Black and Cox (1976) have introduced a first passage model, which means that the

firm defaults when the asset value is lower than a default barrier for the first time

and not only at the time of maturity T. In the first passage model of Longstaff and

Schwartz (1995) it is assumed that the short-term risk-free interest rate is stochastic,

modeled with a Vasicek process, and the risk-free interest rate is correlated with the

asset value. Zhou (2001) models the asset return with a jump-diffusion process and

thus introduces an additional source of uncertainty leading to empirically more

59See Black and Scholes (1973) and Merton (1973).
60See for example Bluhm et al. (2003), p. 141 ff. In the documentation of the KMV model (see

Crosbie and Bohn 1999) the classical Merton approach is described for solving this problem but

according to Bluhm et al. (2003), KMV uses an undisclosed, more complicated algorithm for this

task.
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plausible results for short-term loans. In addition to the class of asset value models,

the probability of default is often determined with reduced-form models. In this

class, a default is not determined endogenously but it is an exogenous event, and the

default time is modeled as the first jump in a jump process. One of the first reduced-

form models has been developed by Jarrow and Turnbull (1995).61 Although the

extensions of Merton’s asset value model as well as the intensity models usually

show a better empirical performance for modeling the PD, it is not necessarily

problematic for the validity of the subsequently presented Vasicek model. Even if

this model is based on the Merton model, the PD can be determined exogenously

with any estimation method as can be seen in the subsequent section.

2.4 The Conditional Probability of Default Within

the One-Factor Model of Vasicek

In contrast to the Merton model, the Vasicek model does not focus on the probabil-

ity of default of a single obligor but quantifies the probability distribution of losses

in a loan portfolio. Since the asset value processes and as a consequence the default

events cannot be assumed to be independent of each other, a systematic factor is

introduced into the model that influences all asset values in a portfolio.62 As the

stochastic interdependence between the firms is modeled by one systematic factor,

the model is also called the Vasicek one-factor model. The systematic factor is

introduced into the model by decomposing the stochastic component of the asset

value process from (2.54) or (2.56) into two components that realize at a future

point in time T: a systematic part ~x that influences all firms within the portfolio and a

firm-specific (idiosyncratic) part ~ei. Thus, the stochastic component ~Wi;T of each

obligor i in t ¼ T can be represented as

~Wi;T ¼ bi � ~xT þ ci � ~ei;T ; (2.58)

in which ~xT � Nð0; TÞ and ~ei;T � Nð0; TÞ are independently and identically nor-

mally distributed with mean zero and standard deviation
ffiffiffi

T
p

for all i 2 1; :::; nf g.
The degree of the stochastic dependence to the systematic and the idiosyncratic

factors is represented by the factor loadings bi and ci. In the context of such factor

models, the stochastic component ~Wi, mathematically the realization of a standard

Wiener process, is usually called the “standardized log-return” of a firm, since this

variable results from the logarithm of the asset returns lnð ~AT=A0Þ after standardiza-
tion, see (2.57). For the sake of clarity, the standardized log-returns of the assets

61A review of the literature regarding structural and reduced-form models can be found in Duffie

and Singleton (2003) and Grundke (2003), p. 15 ff.
62Cf. Vasicek (1987).
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will be denoted by ~ai instead of ~Wi in the following. Using this notation and

choosing a time period of T ¼ 1 (e.g. 1 year), (2.58) can be written as

~ai ¼ bi � ~xþ ci � ~ei (2.59)

with ~x � Nð0; 1Þ and ~ei � Nð0; 1Þ. The factor loadings can be written as bi ¼ ffiffiffiffi

ri
p

and ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

, where ri is some constant, as this assures an expectation value of

zero and a standard deviation of one of the standardized log-returns ~ai:

E ~aið Þ ¼ E
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei

� �

¼ ffiffiffiffi

ri
p � E ~xð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � E ~eið Þ ¼ 0; (2.60)

V ~aið Þ ¼ V
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei

� �

¼ ri � V ~xð Þ þ 1� rið Þ � V ~eið Þ
¼ ri þ 1� rið Þ ¼ 1: (2.61)

In this model, the correlation structure of each firm i is represented by the firm-

specific correlation
ffiffiffiffi

ri
p

to the common factor.63 The correlation between the

logarithmic asset returns of two firms i, j, which is also called the asset correlation,
can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiri � rjp
or simply as r for the case of a homogeneous

correlation structure:

r ¼ Corr ln
~Ai;T

Ai;0

� �

; ln
~Aj;T

Aj;0

� �� �

¼ Corr ~ai; ~aj
� �

¼ Cov ~ai; ~aj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~aið Þ � V ~aj
� �

q ¼ Cov ~ai; ~aj
� �

¼ Cov
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei; ffiffiffiffi

rj
p � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rj
q

� ~ej
� �

¼ Cov
ffiffiffiffi

ri
p � ~x; ffiffiffiffi

rj
p � ~x

� �

¼ ffiffiffiffi

ri
p � ffiffiffiffi

rj
p � V ~xð Þ

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ri � rj
p

:

(2.62)

As already mentioned, within the Vasicek model the probability of default does

not have to be computed by the Merton model above but can be used as an

exogenously given parameter PDi.
64 Corresponding to (2.57), an obligor i defaults

at t ¼ T when the latent variable ~ai falls below a default threshold di, which can be

characterized by

~ai < di , ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei < di: (2.63)

63The factors used in the model are not observable. Therefore, they are also called latent variables.
64The probability of default could either be determined by the institution itself or by a rating

agency.
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Against this background, the threshold di can be determined by the exogenous

specification of PDi:
65,66

PDi ¼ P 1 ~Dif g ¼ 1
� �

¼ P ~ai < dið Þ ¼ FðdiÞ , di ¼ F�1ðPDiÞ: (2.64)

Thus, a default event ~Di of the firm i can be described by

~Di : ~ai ¼ ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei <F�1 PDið Þ: (2.65)

If the loss distribution of a credit portfolio shall be computed by a Monte Carlo

simulation, (2.65) can directly be implemented. In each simulation run the system-

atic factor as well as the idiosyncratic factors of each obligor are randomly gen-

erated. Herewith, the asset return is calculated according to (2.65). If the realization

of ~ai is less than the threshold given by F�1ðPDiÞ, obligor i defaults. Assuming

deterministic LGDs and exposures, the portfolio loss can be determined with

formula (2.8) by summing up the exposure weights wi multiplied by the loss

given default LGDi of each defaulted credit. After repeating this procedure a several

thousand times and sorting the losses of the simulation runs, we obtain the portfolio

loss distribution. At this point it can be seen that the model of Vasicek does not

imply that the PDs are determined on the basis of Merton’s asset value model of the

previous section. Instead, every estimation method can be used for this purpose and

only the dependence structure is specified by the model of Vasicek.

If the loss distribution or some characteristics of the distribution like the VaR

or the ES shall be determined analytically, it is helpful to make use of the condi-

tionally independence property of the asset returns. This means that for a given

realization of the systematic factor, the asset returns are stochastically independent.

Conditional on a realization of the systematic factor ~x ¼ x, the probability of default
of each obligor is

P 1 ~Dif g ¼ 1j~x ¼ x
� �

¼ P ~ai < dij~x ¼ xð Þ

¼ P
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei <F�1 PDið Þj~x ¼ x

� �

¼ P ~ei <
F�1 PDið Þ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

¼: piðxÞ:

(2.66)

65The function F�1ð�Þ stands for the inverse standard normal CDF.
66If the probability of default is determined by the asset value model, the default threshold di
equals the negative distance to default � d, see (2.57).
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This conditional probability of default piðxÞ is the PD that would be assigned if

the realization of the systematic factor at the horizon was known. By contrast, the

unconditional probability of default reflects all information that is currently avail-

able, which means that the systematic factor is a random variable and therefore

unknown. The unconditional PD equals the average value of the conditional PD

across all possible realizations of the systematic factor.67 This can be shown using

the law of iterated expectations:68

E pið~xÞð Þ ¼ E P 1 ~Dif g ¼ 1j~x
� �� �

¼ E E 1 ~Dif gj~x
� �� �

¼ E 1 ~Dif g
� �

¼ P 1 ~Dif g ¼ 1
� �

¼ PDi:
(2.67)

Formula (2.66) for the conditional probability of default is sometimes called the

Vasicek formula and is also used within the Basel framework. Details will be

described in Sect. 2.7.

2.5 Measuring Credit Risk in Homogeneous Portfolios

with the Vasicek Model

In order to achieve an analytical solution of the loss distribution, it is helpful

to assume that the credit portfolio is homogeneous. In a homogeneous portfolio,

all credits have the same PD, an identical (deterministic) LGD, the same EAD, and

an identical asset correlation:69

PDi ¼ PD; LGDi ¼ LGD; EADi ¼ EAD; and ri ¼ r 8i¼ 1; :::;n: (2.68)

In (sub-)portfolios where the credits have similar exposures and similar risk

characteristics the assumption of homogeneity should not be critical and lead to a

good approximation of the loss distribution. Candidates for application of such a

simplification are retail portfolios and in some cases portfolios of smaller banks.70

In a homogeneous portfolio, a default of k credits leads to a relative loss of

l ¼ k � EAD � LGD
n � EAD ¼ k

n
� LGD: (2.69)

67Cf. Gordy (2003), p. 203.
68Cf. Franke et al. (2004), p. 41.
69This section is based on Vasicek (1987).
70Cf. Bluhm et al. (2003), p. 60.
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As the defaults are exchangeable, this loss results for any k defaults. The

probability of this event is

P

X

n

i¼1

1 ~Dif g¼ k

 !

¼ n
k

� �

|ffl{zffl}

	

�P ~A1;T<B1; . . . ; ~Ak;T<Bk
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

		

; ~Akþ1;T �Bkþ1; . . . ; ~An;T �Bn
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

			

0

@

1

A:

(2.70)

The expression ~Ai;T <Bi indicates a default of firm i.71 Therefore, the term (**)

refers to a default of the first k credits, whereas the other n–k credits (***) do not

default. The binomial coefficient (*) represents the number of possible combina-

tions of k defaults out of n credits. Using the conditional independence property of

Sect. 2.4, the probability of having k defaults can easily be computed within the

one-factor model:72

Pk ¼P

X

n

i¼1

1 ~Dif g ¼ k

 !

¼ n

k

� �

�P ~A1;T<B1; :::; ~Ak;T<Bk; ~Akþ1;T �Bkþ1; :::; ~An;T �Bn

� �

¼ n

k

� �

�
ð

1

x¼�1
P ~A1;T<B1; :::; ~Ak;T<Bk; ~Akþ1;T �Bkþ1; :::; ~An;T �Bnj~x¼ x
� �

dFðxÞ

¼ n

k

� �

�
ð

1

x¼�1
P ~e1<

F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p ; :::;~ek<

F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p ;

�

~ekþ1 �
F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p ; :::;~en �

F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p

�

dFðxÞ

¼
ð

1

x¼�1

n

k

� �

� pðxÞð Þk � 1�pðxÞð Þn�kdFðxÞ:

(2.71)

This is also known as the Vasicek binomial model since the number of defaults

(and the gross loss rate) of the portfolio is binomially distributed with probability

pðxÞ for a realization of the systematic factor ~x ¼ x:73

71Cf. Sect. 2.3
72The second step is performed by using the Bayes’ theorem for continuous distributions, cf.

Appendix 2.8.3, and the standard normal distribution of the systematic factor.
73The notation Bðn; pÞ indicates a binomial distribution with parameters n and p.

32 2 Credit Risk Measurement in the Context of Basel II



X

n

i¼1

1 ~Dif gjx
 !

� B n; pðxÞð Þ: (2.72)

Hence, the conditional probability of k defaults equals

P

X

n

i¼1

1 ~Dif g ¼ kj~x ¼ x

 !

¼ n
k

� �

� pðxÞð Þk � 1� pðxÞð Þn�k; (2.73)

which is the integrand of (2.71).74

Due to the homogeneity of exposures, the corresponding loss distribution func-

tion is given as75

FðnÞðlÞ ¼ P ~L � l
� � ¼ P

1

n
� LGD �

X

n

i¼1

1 ~Dif g � l

 !

¼ P

X

n

i¼1

1 ~Dif g � l � n
LGD

 !

¼
X

l�n=LGDb c

k¼0

Pk: (2.74)

With (2.71) and (2.74), the distribution can be computed via numerical integra-

tion; thus, in the case of homogeneous portfolios, there is no need for a Monte Carlo

simulation. Furthermore, applying definition (2.15) and (2.19), the risk measures

VaR and ES within the Vasicek binomial model can be computed, which will be

named VaRðnÞðlÞ and ESðnÞðlÞ, respectively, leading to

VaRðnÞ
a

~L
� � ¼ inf l 2 RjP ~L � l

� 	 ¼
X

l�n=LGDb c

k¼0

Pk � a

( )

; (2.75)

ESðnÞa
~L
� � ¼ 1

1� a
E ~L � 1 ~L�VaR

ðnÞ
af g

 �

� VaRðnÞ
a P ~L � VaRðnÞ

a

h i

� ð1� aÞ
h i

� �

:

(2.76)

If it is assumed that the portfolio consists of an infinite number of obligors,76 an

easy-to-handle closed form solution of the loss distribution and the probability

74See also Gordy and Heitfield (2000).
75The symbolism xb c is defined as in (2.43).
76In this case, the homogeneous portfolio is called “infinitely fine grained”. See also Sect. 2.6 for

further details.
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density function can be achieved. According to Vasicek (1991), the resulting limit
distribution is77

Fð1ÞðlÞ ¼ lim
n!1FðnÞðlÞ

¼ F
1
ffiffiffi

r
p �

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 l

LGD

� �

� F�1 PDð Þ
� �� �

(2.77)

and the corresponding probability density function equals

f ð1ÞðlÞ¼
ffiffiffiffiffiffiffiffiffiffi

1�r
r

s

�exp � 1

2r
�

ffiffiffiffiffiffiffiffiffiffi

1�r
p

�F�1 l

LGD

� �

�F�1 PDð Þ
 �2

þ1

2
F�1 l

LGD

� � �2
 !

:

(2.78)

Both functions are visualized in Fig. 2.2 for the parameter setting PD ¼ 5%,

r ¼ 20%, and LGD ¼ 100%. Obviously, the probability density function is
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Fig. 2.2 Limiting loss distribution of Vasicek (1991)

77See Appendix 2.8.4.
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right-skewed and the function has so-called “fat tails”. Thus, the kurtosis of loss

distributions is typically much higher than the kurtosis of a standard normal

distribution. These characteristics reflect the relatively high probability of suffering

losses that are several times higher than the expected loss.

With this resulting limit distribution, it is possible to quickly approximate the loss

distribution of large subportfolios with similar risk characteristics with high accu-

racy. This could especially be done for subsegments of a bank’s retail portfolio.

Furthermore, as the distribution only depends on the PD, the LGD, and the correla-

tion parameter, the complexity of model calibration is relatively low. Based on the

loss distribution (2.77) the VaR and the ES can be computed in closed form, too:78

VaRð1Þ
a

~L
� � ¼ F

F�1ðPDÞ þ ffiffiffi

r
p � F�1 að Þ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� LGD; (2.79)

ESð1Þ
a

~L
� � ¼ 1

1� a
� F2 F�1ðPDÞ;�F�1 að Þ; ffiffiffi

r
p� � � LGD; (2.80)

where F2ð�Þ stands for the bivariate cumulative normal distribution function. This

function is defined as

F2 x; y; R2
� �

:¼ P ~X � x; ~Y � y
� � ¼

ð

x

u¼�1

ð

y

v¼�1
’2 u; vð Þdv du; (2.81)

where ~X; ~Y are standard normal distributed random variables, which have a corre-

lation of R. The joint density function ’2 of the bivariate standard normal distribu-

tion is defined as79

’2 u; vð Þ :¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
p � exp � 1

2

u2 � 2Ruvþ v2

1� R2

� �

: (2.82)

2.6 Measuring Credit Risk in Heterogeneous Portfolios

with the ASRF Model of Gordy

In order to achieve analytical tractability of a model that can be used for risk

quantification in heterogeneous portfolios, the so-called Asymptotic Single Risk
Factor (ASRF) framework has been developed by Gordy (2003).80 In this frame-

work it is assumed that

78See Appendix 2.8.5.
79Cf. Bronshtein et al. (2007), p. 779 f., especially (16.156).
80See also Bank and Lawrenz (2003).

2.6 Measuring Credit Risk in Heterogeneous Portfolios with the ASRF Model of Gordy 35



(A) The portfolio is infinitely fine-grained and

(B) Only a single systematic risk factor influences the credit risk of all loans in the

portfolio

Assumption (A) refers to the granularity of a portfolio that describes the impact

of a single credit to the overall portfolio. In a portfolio that consists of a small

number of borrowers – a coarse-grained portfolio – there is a relatively high impact

of the firm-specific, idiosyncratic risk component. A portfolio with a high degree of

name concentration is also called a “lumpy” credit portfolio. In contrast, the

idiosyncratic risk vanishes in the limiting case of infinite granularity and the risk

is solely a result of the uncertainty about the systematic risk factor,81 as will be

shown in the following. A portfolio is “infinitely granular” or “asymptotic” if it

consists of a nearly infinite number of credits ðn ! 1Þ with each credit having a

deterministic exposure weight of negligible size. Concretely, the following condi-

tions have to be fulfilled:82

lim
n!1

X

n

i¼1

EADi ¼ 1; (2.83)

X

1

n¼1

EADn

P

n

j¼1

EADj

0

B

B

B

@

1

C

C

C

A

2

<1: (2.84)

Furthermore, it is assumed that all dependencies across credit events can be

expressed by a set of systematic risk factors ~x so that the credit events are mutually

independent conditional on ~x.83 This not only refers to the assumption of condition-

ally independent defaults but also to conditional independence of LGDs and

especially of the products ðgLGDi � 1f ~DigÞ. These conditions are necessary for the

applicability of the strong law of large numbers. As shown in Appendix 2.8.7, these

conditions assure that the portfolio loss (almost surely) equals its conditional

expectation:

P lim
n!1

~L� E ~Lj~x� �� 	 ¼ 0
� �

¼ 1; (2.85)

81Cf. BCBS (2001a), p. 89, } 422. This effect could also be found for the limiting distribution of the

Vasicek binomial model, see Sect. 2.5.
82Cf. Bluhm et al. (2003), p. 87 ff.
83Assumption (B), the existence of only a single systematic risk factor, is not needed at this stage.
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which is usually much easier to calculate than the unconditional loss distribution.84

As demonstrated in Appendix 2.8.8, (2.83) and (2.84) also assure that85

lim
n!1

X

n

i¼1

wi
2 ¼ 0: (2.86)

Thus, the weight of each exposure must be negligible. This formulation is

directly related to the Herfindahl–Hirschmann Index (HHI), a common measure

for indicating the degree of concentration:86

HHI ¼
X

n

i¼1

wi
2 ¼ 1

n	
: (2.87)

In contrast to the actual number of credits n, the variable n* is the so-called

“effective number” of credits. In a homogeneous portfolio, which has the least

possible exposure concentration for a given number of credits, n and n* are

identical. Hence, n* can be interpreted as the number of credits in a homogeneous

portfolio with the equivalent degree of name concentration risk. (2.86) can there-

with be formulated as

lim
n!1

X

n

i¼1

wi
2 ¼ lim

n!1
1

n	
¼ 0; (2.88)

which shows that it is not enough that the actual number of credits goes to infinity

but the effective number of credits must go to infinity.

Using property (2.85) the VaR can be written as87

lim
n!1VaRa ~L

� � ¼ VaRa E ~Lj~x� 	� �

: (2.89)

Additionally, Gordy (2003) has introduced assumption (B), which states that

there is only a single risk factor that influences the credit risk of all loans. Thus, it is

assumed that there exist no sector-specific risk factors such as industry-specific or

84For ease of notation, the convergence of a sequence Xn towards X with probability one is

indicated by lim
n!1Xn ¼ X instead of P lim

n!1Xn ¼ X
� �

¼ 1 in the following.
85This is the result of Kronecker’s Lemma, see Appendix 2.8.8, which is also needed to proof the

strong law of large numbers presented in Appendix 2.8.7. This condition has also been formulated

by Vasicek (2002), p. 160.
86See BCBS (2001a), p. 97, } 459 and Gordy (2003). The HHI was used in this earlier version of

the Basel framework for mapping a heterogeneous portfolio into a comparable homogeneous

portfolio.
87See Gordy (2003), p. 206 ff.
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geographical risk factors and consequently no concentrations in specific sectors. If

assumptions (A) and (B) are fulfilled, the following identity holds:88

VaRa E ~Lj~x� 	� � ¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

: (2.90)

This leads to the important proposition

VaRðASRFÞ
a ¼ lim

n!1VaRa ~L
� � ¼ VaRa E ~Lj~x� 	� � ¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

: (2.91)

As a result of the conditional independence of all credit events, this proposition

can be written as

VaRðASRFÞ
a ¼ E

X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x ¼ VaR1�a ~xð Þ
 !

¼
X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x ¼ VaR1�a ~xð Þ
� �

:

(2.92)

It is obvious that the risk contribution of a single credit is equal to its conditional

expected loss and is therefore constant, regardless of the concrete portfolio to which

the credit is added. This characteristic is also called portfolio-invariance. This can
be explained by the fact that each individual claim does not cause any (further)

diversification effect, since the portfolio has already reached the highest possible

degree of diversification. A further important implication is that the VaR of a

portfolio is exactly additive because the expected value is exactly additive as well.

Consequently, the axiom of subadditivity holds and the VaR is a coherent risk

measure under the assumptions described above.89

The corresponding expression for the risk measure ES is90

lim
n!1ESa ~L

� � ¼ ESa E ~Lj~x� �� �

(2.93)

leading to

ESðASRFÞa
~L
� � ¼ ESa

X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x
� �

 !

: (2.94)

88See Appendix 2.8.9. The slightly different result concerning the confidence level results from a

different definition of the systematic factor. Gordy (2003) assumes that the expected loss is

monotonously increasing in x, whereas here it is assumed that the expected loss is monotonously

decreasing in x. In other words, large values of x indicate a good economic condition in this

setting.
89Cf. Sect. 2.2.2.
90See Appendix 2.8.10.
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Although the equivalent to (2.91) cannot be formulated for the ES in gen-

eral form, many specified single-factor models still allow to determine the ES

analytically.91

2.7 Measuring Credit RiskWithin the IRB Approach of Basel II

The IRB Approach of Basel II is based on both the ASRF framework of Gordy

(2003) and the conditional probability of default resulting from Vasicek (1987).

Under the assumptions of the ASRF framework, it has been shown that the VaR is

given as

VaRðASRFÞ
a

~L
� � ¼

X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x ¼ VaR1�a ~xð Þ
� �

: (2.95)

The confidence level is chosen as a ¼ 0:999 in the Basel framework.92 Further-

more, the conditional probability of default is specified to

P 1 ~Dif g ¼ 1j~x ¼ x
� �

¼ E 1 ~Dif gj~x ¼ x
� �

¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

; (2.96)

which is a result of the Vasicek one-factor model. Recalling the standard normal

distribution of the systematic factor, the VaR can be written as

VaR
Baselð Þ
0:999

~L
� � ¼

X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x ¼ VaR0:001 ~xð Þ
� �

¼
X

n

i¼1

wi � E gLGDij~x ¼ F�1 0:001ð Þ
� �

� E 1 ~Dif gj~x ¼ F�1 0:001ð Þ
� �

¼
X

n

i¼1

wi � E gLGDij~x ¼ �F�1 0:999ð Þ
� �

� F F�1ðPDiÞ þ ffiffiffiffi

ri
p � F�1 0:999ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

:

(2.97)

This is the core element of the Basel II framework, even if there are some minor

differences between the formula above and the concrete capital requirements.

These differences are:

91Cf. Gordy (2003), p. 219.
92From the second to the third consultative document of the Basel framework, the confidence level

was changed from a ¼ 0:995 to a ¼ 0:999; cf. BCBS (2001a, 2003a).
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l The capital requirements are only applied to the Unexpected Loss (UL), which is
the difference of VaR and EL. This is due to the fact that the expected loss is

already accounted for in the provisions. As the loan loss provisioning reduces the

equity, a capital requirement which includes the expected loss would require this

capital amount twice.93

l The LGD-specific term of (2.97) shows that the expected LGD under the

specified conditions of a VaR scenario is needed. The regulatory formula simply

uses the notation “LGD” in the VaR term as well as in the expected loss term.

However, this does not mean that the expected LGD has to be inserted. If an

institution uses own LGD estimates, these have to “reflect economic downturn

conditions where necessary to capture the relevant risks”.94 This LGD is also

called “Downturn LGD” (DLGD). A background note on LGD quantification

clarifies that the downturn LGD is at least in principle meant in terms of the

conditional LGD of (2.97). But as a concrete quantification and validation of

downturn LGDs in the sense above is found to be “not operationally feasible

given the current state of practice in this area”, there is no regulatory function

that transforms the unconditional into a conditional LGD and also no explicit

demand for LGD quantification in a 99.9% scenario.95

l The PD in the formula above refers to the 1-year probability of default. In

practice, many loans have an effective maturity Mi that can substantially differ

from 1 year, especially towards longer maturities. As a long-term loan is usually

considered as more risky than a short-term loan, this shall also be reflected in the

capital requirement. Therefore a so-called Maturity Adjustment is implemented

as a factor in the Basel II capital rules.96

l The overall level of minimum capital requirements of the model above is

calibrated to a regulatory desired magnitude by introducing a Scaling Factor
(SF), which has to be multiplied to the result of the model itself. This factor is set

93Because of this argument, the former version of the capital rules, which had the VaR and not the

UL as capital requirement, were changed; cf. BCBS (2001a). The problem is that the regulatory

rules and the different accounting standards are not fully consistent. Therefore, a bank has to

compare the amount of total eligible provisions with the total expected losses amount. If the EL

exceeds the provisions, the difference has to be deducted such that it is guaranteed that the total

capital amount captures both the UL and the EL; cf. BCBS (2005a), } 43.
94BCBS (2005a), } 468.
95Cf. BCBS (2004a). Interestingly, the supervisors in the United States proposed a concrete

function for mapping the ELGD into the DLGD: DLGD ¼ 0:08þ 0:92 � ELGD. Thus, the down-
turn LGD was a linear mapping from [0%, 100%] to [8%, 100%]. However, in the final rule this

supervisory mapping function is not included because of several points of criticism. Nevertheless,

the agencies still believe that the formula is an appropriate way to deal with problems in estimating

downturn LGDs; cf. FDIC (2007), Sect. III.B.3, p. 69310. However, there is no direct link between

this mapping function and the conditional LGD as presented in (2.97).
96Cf. Heithecker (2007), p. 31 f., p. 57 ff., and p. 235 ff., for details regarding the maturity

adjustment including an outline of the corresponding literature.
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to SF ¼ 1:06, which is based on the data of the Quantitative Impact Study 3

(QIS 3).97

Taking all these points together, the capital requirement for each credit under
Basel II (in absolute terms) can be expressed as98

UL
Baselð Þ
abs;i ¼ VaR

Baselð Þ
abs;i � EL

Baselð Þ
abs;i

¼ EADi � DLGDi � F
F�1ðPDiÞ þ ffiffiffiffi

ri
p � F�1 0:999ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

� ELGDi � PDi

" #

� 1þ Mi � 2:5ð Þ � b
1� 1:5 � b � 1:06

(2.98)

with b ¼ ½0:11852� 0:05478 � lnðPDiÞ�2. Furthermore, the correlation parameter
is specified by the regulatory framework. Dependent on the asset class (and

for some asset classes dependent on the PD and revenue, too), the correlation

parameter is between 3% and 24%.99 For corporate, sovereign, and bank expo-

sures (C,S,B), ri is between 12% (if the PD is very high) and 24% (if the PD is

very low):100

r C;S;Bð Þ
i

¼ 0:12 � 1� exp �50 � PDið Þ
1� exp �50ð Þ þ 0:24 � 1� 1� exp �50 � PDið Þ

1� exp �50ð Þ
� �

: (2.99)

For small- and medium-sized entities (SMEs), a firm-size adjustment is made.

Depending on the total annual sales Si (in millions of Euros), the correlation

parameter will be reduced linearly between 4% (for Si � 5) and 0% (for

Si ¼ 50):101

r SMEð Þ
i

¼ r C;S;Bð Þ
i

� 0:04 � 1�max S; 5ð Þ � 5

45

� �

; (2.100)

97In total, 365 banks participated in the study, which focused on the impact of the Basel II

proposals on the minimum capital requirements compared to Basel I; cf. BCBS (2003b).
98Cf. BCBS (2005a), } 272, } 273, } 328, } 329, and } 330. The maturity adjustment is only applied

to corporate, sovereign, and bank exposures, including small- and medium-sized entities (SMEs).

This can also be interpreted as a fixed maturity of Mi ¼ 1 year for retail exposures.
99For internal purposes a bank could measure r from default series or from equity values; cf.

Gordy and Heitfield (2002), D€ullmann and Trapp (2005), or Lopez (2004). The results for

estimating r from portfolio data may differ from the correlations given in Basel II, see e.g.

D€ullmann and Scheule (2003) or Dietsch and Petey (2002), but overall the parameters given in

Basel II are reasonable, see especially Lopez (2004).
100Cf. BCBS (2005a), } 272. The concrete definition of corporate exposures can be found in BCBS
(2005a), } 218 ff.; sovereign and bank exposures are defined in } 229 and } 230.
101Cf. BCBS (2005a), } 273.
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which leads to a reduction of capital requirements for SMEs. For residential

mortgage exposures the correlation is fixed to 15%,102 for qualifying revolving

retail exposures to 4%,103 and for other retail exposures the correlation parameter is

between 3% and 16%:104

r Retailð Þ
i

¼ 0:03 � 1� exp �35 � PDið Þ
1� exp �35ð Þ þ 0:16 � 1� 1� exp �35 � PDið Þ

1� exp �35ð Þ
� �

:

(2.101)

Taking (2.98) into consideration, the parameters EAD, PD, LGD, and M have

to be determined. As the complexity of these estimations and the data require-

ment would be too high for many banks, there exist two versions of the IRB

Approach for corporate, sovereign, and bank exposures, as mentioned in

Sect. 2.1. In the Advanced IRB Approach, all of these parameters have to be

estimated by the bank. In the Foundation IRB Approach, the LGD and maturity

are given by the regulatory rules. Furthermore, only the current outstandings and

the commitments have to be determined by the bank, the credit conversion factor

and therefore the EAD does not have to be estimated. Thus, under the Founda-

tion Approach, the only parameter that has to be estimated by the bank is the

PD.105 However, for retail exposures, there is no distinction between a Founda-

tion and Advanced IRB Approach. In the IRB-Retail-Approach, the parameters

EAD, PD, and LGD have to be estimated by the bank.106 However, in contrast to

the IRB Approaches of the other asset classes, in the IRB-Retail-Approach it is

allowed to pool credits with similar characteristics such as risk characteristics,

collaterals and exposures.107 As the parameter estimates for the retail portfolio

can be based on these risk pools instead of individual borrower grades,108 the

minimum complexity of the IRB-Retail-Approach is significantly lower than of

the Advanced IRB Approach.

102Cf. BCBS (2005a), } 328.
103Cf. BCBS (2005a), } 329.
104Cf. BCBS (2005a), } 330.
105Cf. BCBS (2005a), } 246 f.
106Cf. BCBS (2005a), } 252. The definition of retail exposures can be found in BCBS (2005a), }
231 ff.
107Cf. BCBS (2005a), } 401 f.
108Cf. BCBS (2005a), } 446.
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2.8 Appendix

2.8.1 Alternative Representation of the ES as an Indicator
Function

Proposition. The definition of the ES (2.19) is equal to (2.29):109

1

1� a
E ~L � 1 ~L�qaf g
h i

� qa P ~L � qa
� 	� ð1� aÞ� 	

� �

¼ 1

1� a
E ~L � 1a ~L�qaf g
 �� �

(2.102)

with

1a ~L�qaf g ¼
1 ~L�qaf g if P ~L ¼ qa

� 	 ¼ 0;

1 ~L�qaf g � P ~L�qa½ �� 1�að Þ
P ~L¼qa½ � � 1 ~L¼qaf g if P ~L ¼ qa

� 	

> 0:

8

<

:

(2.103)

Proof. For the case P ~L ¼ qa
� 	 ¼ 0, the left-hand side immediately equals the right-

hand side of (2.102). Therefore, only the case P ~L ¼ qa
� 	

> 0 is analyzed:

ESa ~L
� � ¼ 1

1� a
E ~L � 1 ~L�qaf g
h i

� qa P ~L � qa
� 	� ð1� aÞ� 	

� �

¼ 1

1� a
E ~L � 1 ~L�qaf g
h i

� ~L � 1 ~L¼qaf g � P ~L � qa
� 	� ð1� aÞ� �

� �

¼ 1

1� a
E ~L � 1 ~L�qaf g �

~L � 1 ~L¼qaf g � P ~L � qa
� 	� ð1� aÞ� �

P ~L ¼ qa
� 	

" # !

¼ 1

1� a
E ~L � 1 ~L�qaf g � P ~L � qa

� 	� ð1� aÞ
P ~L ¼ qa
� 	 1 ~L¼qaf g

 !" # !

¼ 1

1� a
E ~L � 1a ~L�qaf g
 �� �

;

(2.104)

which is the proposed right-hand side of (2.102).

Additionally, we want to show some properties of the function 1a ~L�qaf g, which
are useful for analyzing the axioms of coherency. The expected value of this

variable is

109Cf. Acerbi et al. (2001), p. 8 f.
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E 1a ~L�qaf g
 �

¼ E 1 ~L�qaf g � P ~L � qa
� 	� 1� að Þ

P ~L ¼ qa
� 	 � 1 ~L¼qaf g

" #

¼ E 1 ~L�qaf g
h i

� E
P ~L � qa
� 	� 1� að Þ

P ~L ¼ qa
� 	 � 1 ~L¼qaf g

" #

¼ P ~L � qa
� 	� P ~L � qa

� 	� 1� að Þ� �

¼ 1� a:

(2.105)

Moreover, we want to show that 1a ~L�qaf g 2 ½0; 1�. For ~L 6¼ qað~LÞ this is obvi-
ous by the definition of the indicator function. However, for ~L ¼ qað~LÞ, the variable
is given as

1a ~L�qaf g
�

�

�

�

~L¼qa

¼ 1� P ~L � qa
� 	� 1� að Þ

P ~L ¼ qa
� 	

¼ 1� P ~L> qa
� 	þ P ~L ¼ qa

� 	� 1� að Þ
P ~L ¼ qa
� 	

¼ �P ~L> qa
� 	þ 1� að Þ

P ~L � qa
� 	� P ~L< qa

� 	

¼ P ~L � qa
� 	� a

P ~L � qa
� 	� P ~L< qa

� 	 2 0; 1½ �;

(2.106)

because of P ~L< qa
� 	 � a � P ~L � qa

� 	

.

2.8.2 Application of Itô’s Lemma

An Itô-process is given as

dAt ¼ a At; tð Þdtþ b At; tð ÞdWt: (2.107)

With aðAt; tÞ ¼ m � At and bðAt; tÞ ¼ s � At, we get the stochastic process of the

asset value (see (2.54))

dAt ¼ m � At dtþ s � At dWt: (2.108)

Therefore, the asset value follows an Itô-process and Itô’s Lemma can be applied

in order to determine dYt ¼ d lnAt. When Yt is a function of At and t, so we write

Yt ¼ gðAt; tÞ, Itô’s Lemma shows that110

110Cf. Hull (2006), p. 273 f.
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dYt ¼ dg At; tð Þ

¼ dg

dAt
� a At; tð Þ þ dg

dt
þ 1

2

d2g

dAt
2
� b2 At; tð Þ

� �

dtþ dg

dAt
� b At; tð Þ dWt:

(2.109)

With dYt ¼ d lnAt, aðAt; tÞ ¼ m � At, and bðAt; tÞ ¼ s � At, this leads to

dYt ¼ d lnAt

¼ 1

At
� m � At þ 0þ 1

2
� 1

At
2

� �

s � Atð Þ2
� �

dtþ 1

At
s � Atð ÞdWt

¼ m� 1

2
s2

� �

dtþ s dWt:

(2.110)

2.8.3 Application of Bayes’ Theorem for Continuous
Distributions

The definition of probability density functions and Bayes’ theorem for continuous

distributions lead to111

P ~y< uð Þ ¼
ð

u

y¼�1
fYðyÞ dy

¼
ð

1

x¼�1

ð

u

y¼�1
fX;Yðx; yÞ dydx

¼
ð

1

x¼�1

ð

u

y¼�1
fYðyjxÞ dy fXðxÞdx

¼
ð

1

x¼�1
P ~y< ujxð ÞfXðxÞ dx: (2.111)

Thus, using
dFXðxÞ
dx ¼ fXðxÞ we get

P ~y< uð Þ ¼
ð

1

x¼�1
P ~y< ujxð Þ dFXðxÞ: (2.112)

111Cf. Tarantola (2005), p. 20.
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2.8.4 Limit Distribution and Probability Density Function
in the Vasicek Model

In the following, the integral of the distribution (2.74) of the binomial model shall

be solved for the limit n ! 1:112

Fð1ÞðlÞ ¼ lim
n!1FðnÞðlÞ

¼ lim
n!1

X

l�n=LGDb c

k¼0

ð

1

x¼�1

n
k

� �

� pðxÞð Þk � 1� pðxÞð Þn�kdFðxÞ (2.113)

with

pðxÞ ¼ F
F�1 PDð Þ � ffiffiffi

r
p � x

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

: (2.114)

Using pðxÞ ¼: s and the identity F �yð Þ ¼ 1� FðyÞ, it follows

s ¼ F
F�1 PDð Þ � ffiffiffi

r
p � x

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

,
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1ðsÞ ¼ F�1 PDð Þ � ffiffiffi

r
p � x

, x ¼ � 1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1ðsÞ � F�1 PDð Þ
� �

, FðxÞ ¼ 1� F
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1ðsÞ � F�1 PDð Þ
� �

� �

¼: 1�WðsÞ:

(2.115)

Using dFðxÞ ¼ d 1�WðsÞð Þ ¼ �dWðsÞ and lim
x!�1 s ¼ lim

x!�1 pðxÞ ¼ 1 as well

as lim
x!1 s ¼ lim

x!1 pðxÞ ¼ 0, the integral (2.113) can be written as

Fð1ÞðlÞ ¼ lim
n!1

ð

0

s¼1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�k � �1ð ÞdWðsÞ

¼
ð

1

s¼0

lim
n!1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�kdWðsÞ:
(2.116)

112The derivation is based on Vasicek (1991). In contrast to the original paper the derivation is not

restrained to the gross loss but includes deterministic LGD 6¼ 1.
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The integrand of (2.116) is binomially distributed. According to the central

limit theorem of Lindberg-Lévy or the special case for binomial distributions of

Moivre–Laplace, this distribution converges to a normal distribution for

n ! 1:113

lim
n!1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�k ¼ lim
n!1F

n � l LGD= � n � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � s � 1� sð Þp

 !

¼ lim
n!1F

ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s � 1� sð Þp

l

LGD
� s

� �

 !

¼
F 1ð Þ ¼ 1 if l LGD= > s;

Fð0Þ ¼ 1 2= if l LGD= ¼ s;

F �1ð Þ ¼ 0 if l LGD= < s:

8

>

<

>

:

(2.117)

Therefore, using Wð0Þ ¼ F �1ð Þ ¼ 0,114 the distribution (2.116) is equal to

Fð1ÞðlÞ ¼
ð

1

s¼0

lim
n!1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�kdWðsÞ

¼
ð

l=LGD

s¼0

1 dWðsÞ

¼ WðsÞjl=LGDs¼0

¼ W
l

LGD

� �

¼ F
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 l

LGD

� �

� F�1 PDð Þ
� �� �

:

(2.118)

The corresponding probability density function f ð1ÞðlÞ is the first derivative

of Fð1ÞðlÞ. With dFðyÞ dy= ¼ ’ðyÞ, dF�1ðyÞ dy= ¼ 1 ’ F�1ðyÞ� ��

, and ’ðyÞ ¼
1

ffiffiffiffiffiffi

2p
p
�� � � exp �y2 2=ð Þ this leads to

113See Billingsley (1995), p. 357 f.
114Cf. (2.115).
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f ð1ÞðlÞ ¼ dFð1ÞðlÞ
dl

¼ ’
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

�F�1 l

LGD

� �

�F�1 PDð Þ
� �� �

�
ffiffiffiffiffiffiffiffiffiffiffi

1� r
r

s

� 1

’ F�1 l
LGD

� �� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

1� r
r

s

exp � 1

2r
�

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

�F�1 l

LGD

� �

�F�1 PDð Þ
 �2

 

þ1

2
F�1 l

LGD

� � �2
!

: ð2:119Þ

2.8.5 VaR and ES of the Limit Distribution in the Vasicek Model

According to (2.14), the VaR for continuous distributions can be expressed as

VaRa ~L
� � ¼ F�1

L að Þ: (2.120)

Thus, corresponding to distribution (2.77), the VaR can be computed as follows:

Fð1Þ VaRð1Þ
a

~L
� �

� �

¼ F
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 VaR
ð1Þ
a ~L
� �

LGD

 !

� F�1 PDð Þ
 ! !

¼! a

,
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 VaR
ð1Þ
a ~L
� �

LGD

 !

¼ F�1 PDð Þ þ ffiffiffi

r
p � F�1 að Þ

, VaRð1Þ
a

~L
� � ¼ F

F�1 PDð Þ þ ffiffiffi

r
p � F�1 að Þ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� LGD:
(2.121)

In order to determine the ES, the representation of (2.20) is used:

ESa ~L
� � ¼ 1

1� a

ð

1

u¼a

qudu: (2.122)

With (2.121) and using the substitution y :¼ �F�1ðuÞ so that du dy= ¼ �’ðyÞ,
y u ¼ að Þ ¼ �F�1 að Þ and y u ¼ 1ð Þ ¼ �F�1ð1Þ ¼ �1, this leads to

ESð1Þ
a

~L
� � ¼ 1

1� a

ð

1

u¼a

LGD � F F�1 PDð Þ þ ffiffiffi

r
p � F�1ðuÞ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

du
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¼ 1

1� a
� LGD �

ð

�1

y¼�F�1 að Þ

F
F�1 PDð Þ � ffiffiffi

r
p � y

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� �1ð Þ � ’ðyÞdy

¼ 1

1� a
� LGD �

ð

�F�1 að Þ

y¼�1
F

F�1 PDð Þ � ffiffiffi

r
p � y

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� ’ðyÞdy:

(2.123)

With the identity115

ð

z

y¼�1
F

x� a � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �

� ’ðyÞdy ¼ F2 x; z; að Þ; (2.124)

where F2ð�Þ is the bivariate cumulative normal distribution as defined in (2.81),

(2.123) can be expressed as116

ESð1Þ
a

~L
� � ¼ 1

1� a
� LGD � F2 F�1 PDð Þ;�F�1 að Þ; ffiffiffi

r
p� �

: (2.125)

2.8.6 Alternative Representation of the Bivariate Normal
Distribution

Proposition. The bivariate normal distribution can be represented as

ð

z

y¼�1
F

x� a � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �

� ’ðyÞdy ¼ F2 x; z; að Þ: (2.126)

Proof. From

ð

z

y¼�1
F

x� a � y
ffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �

�’ðyÞdy¼ 1

2p

ð

z

y¼�1

ð

x�a�y
ffiffiffiffiffiffi

1�a2
p

u¼�1
exp �1

2
y2

� �

� exp �1

2
u2

� �

dudy

(2.127)

and using the substitution u :¼ w�a�y
ffiffiffiffiffiffiffiffi

1�a2
p so that du

dw ¼ 1
ffiffiffiffiffiffiffiffi

1�a2
p , w u ¼ �1ð Þ ¼ �1 and

w u ¼ x�a�y
ffiffiffiffiffiffiffiffi

1�a2
p

� �

¼ x, we obtain117

115See Appendix 2.8.6.
116See also Pykhtin (2004).
117The definition of the bivariate standard normal CDF used in the last step is given in (2.81).
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1

2p

ð

z

y¼�1

ð

x�a�y
ffiffiffiffiffiffi

1�a2
p

u¼�1
exp � 1

2
y2

� �

� exp � 1

2
u2

� �

du dy

¼ 1

2p

ð

z

y¼�1

ð

x

w¼�1
exp � 1

2
y2

� �

� exp � 1

2

w� a � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �2

 !

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p dw dy

¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

ð

z

y¼�1

ð

x

w¼�1
exp � 1

2
y2 þ w2 � 2aywþ a2y2

1� a2

� �� �

dw dy

¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

ð

z

y¼�1

ð

x

w¼�1
exp � 1

2 1� a2ð Þ y2 � 2aywþ w2
� �

� �

dw dy

¼: F2 x; z; að Þ:
(2.128)

2.8.7 Application of the Strong Law of Large Numbers

Proposition. The portfolio loss is almost surely equal to the conditional expected
loss

P lim
n!1

~L� E ~Lj~x� �� 	 ¼ 0
� �

¼ 1 (2.129)

under the conditions of infinite granularity (2.83) and (2.84).118

Proof. The proof is based upon a version of the strong law of large numbers. For

an independent random sequence ~Zi the following almost sure convergence

holds119

P lim
n!1

1

an

X

n

i¼1

~Zi

" #

¼ 0

 !

¼ 1 8x 2 R (2.130)

if

lim
n!1 an ¼ 1 (2.131)

118The following proof is similar to Gordy (2003), p. 223 f. and Bluhm et al. (2003), p. 88 f.
119See Petrov (1996), p. 209, Theorem 6.6.
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and

X

1

n¼1

V ~Zn

� �

an2

 !

<1: (2.132)

The random sequence ~Zi can be defined as ~Zi :¼ EADi � gLGDi � 1 ~Dif g�
�

E gLGDi � 1 ~Dif gj~x
h i

Þ. As it is required that the ~Zis are independent, the strong law

of large numbers is applied conditional on the realization of the systematic factor

~x ¼ x. Under this condition, the products gLGDi � 1 Dif g
� �

are independent by assump-

tion and therefore the ~Zi’s are independent as well. Defining an :¼
Pn

j¼1 EADj, the

condition (2.131) directly follows from the first granularity assumption (2.83).

In order to check the second condition, the boundedness of ~Zn is analyzed.

The loss variable 1 ~Dnf g only takes the values one and zero. The LGD is assumed

to be in the interval �1; 1½ �.120 As a consequence, the product gLGDn � 1 Dnf g
� �

is

bounded to �1; 1½ � and gLGDi � 1 ~Dif g � E gLGDi � 1 ~Dif gj~x
h i� �

is restricted to

½�2; 2�, leading to V ~Zn

� � � 4 � EADn
2. Therefore, the second condition (2.132)

can be written as

X

1

n¼1

V ~Zn

� �

an2

 !

�
X

1

n¼1

4 � EADn

P

n

j¼1

EADj

0

B

B

B

@

1

C

C

C

A

2

<1: (2.133)

The last expression is valid due to the second granularity condition (2.84). Thus,

the strong law of large numbers (2.130) can be applied. With

1

an

X

n

i¼1

~Zi ¼ 1

P

n

j¼1

EADj

X

n

i¼1

EADi � gLGDi � 1 ~Dif g � E gLGDi � 1 ~Dif gj~x
h i� �� �

¼
X

n

i¼1

wi � gLGDi � 1 ~Dif g � E wi � gLGDi � 1 ~Dif gj~x
h i� �

¼
X

n

i¼1

~Li � E ~Lij~x
� 	� �

¼ ~L� E ~Lj~x� 	 ð2:134Þ

120Negative LGDs are permitted to allow short positions.
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this leads to

P lim
n!1

~L� E ~Lj~x� 	� � ¼ 0j~x ¼ x
� �

¼ 1 8x 2 R: (2.135)

Using (2.135) it can be shown that the almost sure convergence is also true in

the unconditional case:

P lim
n!1

~L� E ~Lj~x� 	� � ¼ 0
� �

¼
ð

P lim
n!1

~L� E ~Lj~x� 	� � ¼ 0j~x ¼ x
� �

dPðxÞ

¼
ð

dPðxÞ ¼ 1:

(2.136)

This completes the proof of (2.129).

2.8.8 Application of Kronecker’s Lemma

Proposition. Assumption (2.83) and (2.84) lead to

lim
n!1

X

n

i¼1

wi
2 ¼ 0: (2.137)

Proof. The following proof is based upon Kronecker’s Lemma.121 Let tn be a

sequence satisfying

0< t1 � t2 � and lim
n!1 tn ¼ 1: (2.138)

If

X

1

n¼1

zn <1; (2.139)

then

lim
n!1

1

tn

X

n

i¼1

ti � zi ¼ 0: (2.140)

121See Petrov (1996), p. 209, Lemma 6.11.
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With tn :¼
Pn

j¼1 EADj

� �2

the conditions (2.138) for tn are fulfilled due to the

first granularity assumption (2.83). Using zn :¼ EADn
Pn

j¼1
EADj

� �2

; (2.139) is valid due

to the second granularity assumption (2.84). Therefore, Kronecker’s Lemma can

be applied, which leads to

lim
n!1

1

tn

X

n

i¼1

ti � zi ¼ lim
n!1

1

P

n

j¼1

EADj

 !2

X

n

i¼1

X

i

j¼1

EADj

 !2

� EADi

P

i

j¼1

EADj

0

B

B

B

@

1

C

C

C

A

22

6

6

6

4

3

7

7

7

5

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼ lim
n!1

P

n

i¼1

EADi
2

P

n

j¼1

EADj

 !2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼ lim
n!1

X

n

i¼1

EADi

P

n

j¼1

EADj

0

B

B

B

@

1

C

C

C

A

20

B

B

B

@

1

C

C

C

A

¼ lim
n!1

X

n

i¼1

wi
2

 !

¼ 0; ð2:141Þ

which is (2.137).

2.8.9 Identity of the VaR in the ASRF Model

Proposition. The following equality is true:

VaRa E ~Lj~x� 	� � ¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

: (2.142)

Proof. Using the notation Eð~Lj~xÞ ¼: g 
 ~x,122 with gð~xÞ ¼ Eð~Lj~xÞ, and assuming

that the conditional expectation is continuously and strictly monotonously decreas-

ing in x, then there exists a unique inverse g�1, which allows the following

transformations:123

122The notation g 
 ~x means that some function g is composed with ~x.
123See Gordy (2003), p. 207 f., for a similar proof.
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g 
 ~x � g 
 x
, g�1 
 g 
 ~x � g�1 
 g 
 x
, ~x � x

(2.143)

and

inf g 
 xf g ¼ g 
 sup xf g: (2.144)

Using the definition of the VaR (2.15) this leads to the proposition:

VaRa E ~Lj~x� 	� � ¼ VaRa g 
 ~xð Þ
¼ inf ljP g 
 ~x> l½ � � 1� af g
¼ inf g 
 xjP g 
 ~x> g 
 x½ � � 1� af g
¼ inf g 
 xjP ~x< x½ � � 1� af g
¼ g 
 sup xjP ~x< x½ � � 1� af g
¼ g 
 inf xjP ~x> x½ � � 1� af g
¼ g 
 VaR1�a ~xð Þ
¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

:

(2.145)

2.8.10 Identity of the ES in the ASRF Model

Proposition. For n ! 1, the ES of the portfolio loss converges to the ES of the
conditional expected loss:

lim
n!1ESa ~L

� � ¼ ESa E ~Lj~x� �� �

: (2.146)

Proof. If it is assumed that the loss distribution is continuous, the second term of

ES definition (2.19) vanishes.124 Therefore it only has to be shown that

lim
n!1E ~L � 1 ~L�qa ~Lð Þf g

h i

� E E ~Lj~x� � � 1
E ~Lj~xð Þ�qa E ~Lj~xð Þð Þ

h i

¼ 0: (2.147)

With ~X :¼ ~L� qa ~L
� �

the first term can be written as

124Gordy (2003) shows that it is no necessary condition that the loss distribution has to be

continuous. If some additional properties, especially regarding the continuity of the conditional

expected loss and of the distribution of the systematic factor, are fulfilled in an interval of x

that contains VaRa ~xð Þ, it follows that lim
n!1P ~L � qa

� � ¼ 1� a so that the second term of the ES

definition still vanishes. See Gordy (2003), p. 228 f.
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E ~L � 1 ~L�qa ~Lð Þf g
h i

¼ E ~L� qa ~L
� �� � � 1 ~L�qa ~Lð Þf g

h i

þ qa ~L
� � � E 1 ~L�qa ~Lð Þf g

h i

¼ E max ~X; 0
� �� 	þ qa ~L

� � � P ~L � VaRa ~L
� �� 	

:

(2.148)

Using the shorter notation mð~xÞ :¼ Eð~Lj~xÞ and with ~Y :¼ mð~xÞ � m q1�að~xÞð Þ as well
as m q1�að~xÞð Þ ¼ qa mð~xÞð Þ from (2.90), the second term of (2.147) equals

E E ~Lj~x� � � 1
E ~Lj~xð Þ�qa E ~Lj~xð Þð Þf g

h i

¼ E m ~xð Þ � 1 m ~xð Þ�qa m ~xð Þð Þf g
� 	

¼ E m ~xð Þ � m q1�a ~xð Þð Þð Þ � 1 m ~xð Þ�m q1�a ~xð Þð Þf g
� 	þ m q1�a ~xð Þð Þ � E 1 m ~xð Þ�m q1�a ~xð Þð Þf g

� 	

¼ E max ~Y; 0
� �� 	þ m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ �:

(2.149)

Thus, (2.147) can be written as

lim
n!1E ~L � 1 ~L�qa ~Lð Þf g

h i

� E E ~Lj~x� � � 1
E ~Lj~xð Þ�qa E ~Lj~xð Þð Þ

h i

¼ lim
n!1 E max ~X; 0

� �� 	þ qa ~L
� � � P ~L � VaRa ~L

� �� 	� �

� E max ~Y; 0
� �� 	þ m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ �� �

¼ lim
n!1 E max ~X; 0

� ��max ~Y; 0
� �� 	�

þ qa ~L
� � � P ~L � VaRa ~L

� �� 	� m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ ��:

(2.150)

Using

lim
n!1 qa ~L

� � ¼ m q1�a ~xð Þð Þ (2.151)

from (2.91) and125

lim
n!1P ~L � qa ~L

� �� 	 ¼ P m ~L
� � � m qa ~L

� �� �� 	 ¼ 1� a; (2.152)

the last two terms of (2.150) vanish:

125Cf. footnote 118.
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lim
n!1 qa ~L

� � � P ~L � VaRa ~L
� �� 	� m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ �� �

¼ lim
n!1 qa ~L

� �� m q1�a ~xð Þð Þ� 	 � 1� að Þ
¼ 0: (2.153)

Additionally, the inequality � x� yj j � maxðx; 0Þ �maxðy; 0Þ � x� yj j holds
8x; y 2 R. Using this inequality and (2.151), the remaining first term of (2.150) can

be evaluated:

lim
n!1E max ~X; 0

� ��max ~Y; 0
� �� 	 � lim

n!1 E ~X � ~Y
� 	

�

�

�

�

¼ lim
n!1 E ~L� qa ~L

� �� m ~xð Þ � m q1�a ~xð Þð Þ½ �� 	
�

�

�

�

¼ lim
n!1 E ~L� m ~xð Þ� 	� qa ~L

� �� m q1�a ~xð Þð Þ� 	
�

�

�

�

¼ lim
n!1 E ~L

� �� E E ~Lj~x� �� �� 0
�

�

�

�

¼ 0 ð2:154Þ

and

lim
n!1E max ~X; 0

� ��max ~Y; 0
� �� 	 � � lim

n!1 E ~X � ~Y
� 	

�

�

�

� ¼ 0: (2.155)

Thus, the first term vanishes, too, which completes the proof of (2.146).
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